
Scalable Rollback for Cloud Operations using
AI Planning

Suhrid Satyal, Ingo Weber, Len Bass, Min Fu
NICTA, Sydney

{Suhrid.Satyal, Ingo.Weber, Len.Bass, Min.Fu}@nicta.com.au

Abstract—Human-induced faults play a large role in systems
reliability. In cloud platforms, system administrators may inad-
vertently make catastrophic mistakes, like deleting a virtual disk
with important data. Providing rollback for cloud operations can
reduce the severity and impact of such mistakes, by allowing to
revert back to a known, good state.

In this paper, we present a scalable approach to rollback
operations that change state of a system on proprietary cloud
platforms. In our previous work, we provided a system that
augments cloud APIs and provides rollback operation using an
AI planner [1]. However, the previous system eventually suffers
from the exponential complexity inherent to AI planning tasks.
In this paper, we divide and parallelize rollback plan generation,
based on characteristics unique to the rollback scenario. Through
experimental evaluation, we show that this approach scales better
than the previous, naı̈ve approach, and effectively avoids the
exponential behavior.

Keywords—reliability, AI planning, cloud computing, web ser-
vice

I. INTRODUCTION

For cloud applications, especially at large scale, one of
the primary impediments to system dependability is human
error. Human operator error is attributed with being the root
cause of 20-50% of system outages [2], [3]. In many cases of
outages caused by human operators, they may not be able to
respond quickly enough to minimize the impact (e.g. losing
traffic, violating SLAs, etc). Moreover, operators may perform
an action that cannot be fixed entirely, like irreversibly deleting
a data store. Such results can be caused with a single API
call on cloud platforms like the Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) platform [4].

In the context of API controlled cloud platforms, operators
risk creating outages by executing undesired actions or actions
whose effects are not fully known to them. Once an undesired
state of the cloud resources has been reached, it is not
necessarily clear to the operator how to revert back to an
earlier, good state, for the following reasons. APIs from public
cloud providers are provided as-is, and correcting mistakes is
only possible by calling the right API operations in the right
sequence. In some cases, API operations are irreversible, and
no combination of actions can completely recover from the
mistake (e.g. deleting a virtual disk).

One way of mitigating human errors is by designing
platform that allows administrators to rollback their changes.
However, in an API-controlled proprietary system this is not
feasible: the operator does not have a level of control over the
platform that allows for such changes. Another approach is to

create a client-side system that augments the API and provides
rollback facilities. An example of such an approach is our
previous work on automatic undo for cloud management [1].
This approach works well for small to medium number of
consecutive cloud operations (i.e. less than 50). However it
does not scale well when the number of operations increases
further. The problem in such cases is that the underlying
automated planning method from artificial intelligence (AI)
faces a computationally hard problem [5].

In this paper, we present a system that facilitates scalable
rollback on API controlled could platform using intermedi-
ate checkpoints. After an initial, user-triggered checkpoint is
created, our system intercepts calls to the cloud API and
creates intermediate checkpoints as appropriate. Should the
need for rollback arise, our system creates a number of AI
planning tasks based on the intermediate checkpoints, uses
an AI planner to discover appropriate sequences of recovery
actions for each planning task, and aggregates them into a
complete rollback plan. By executing the rollback plan, the
cloud resources are brought back to the state of the original
checkpoint, thus achieving the goal of the rollback accordingly.
To enable the use of AI planning, we rely on an abstract
domain model of the API, where each operation is precisely
represented with its pre-requisites and effects.

The key challenge this paper addresses is that generating a
rollback plan with a large number of steps becomes inefficient
at some point. This is due to the inherent complexity of the
AI planning problem: AI Planning is known to be PSPACE-
complete even in its simplest form [5]. That means that there
is no efficient planning algorithm in the general case (unless
P=NP). The implication for our tool is that, as the number of
cloud operations that change the state increases, rollback plan
generation time increases exponentially, as confirmed by our
experiments.

Our contributions in this paper are the following:

• utilizing a unique feature of the undo scenario, i.e.,
the possibility to generate intermediate checkpoints,
to solve this challenge;

• dividing and parallelizing the rollback plan generation:
based on the intermediate checkpoints, we divide
the planning task into smaller, independent tasks and
parallelize planning process; finally we assemble the
resulting partial plans into a comprehensive rollback
plan

• evaluating our method by performing rollback for
large cloud operations on AWS:



◦ we show that we can effectively avoid the
exponential behavior of naı̈ve planning;

◦ we also compare plan generation time of our
approach on machines with different numbers
of CPU cores and show that our approach is
highly parallelizable.

The remainder of this paper is organized as follows. The
next section discusses scenarios and challenges that motivate
our research. We discuss the undo system and different types
of checkpoints in Section III. In Section IV, we explain our
rollback strategies. In Section V, we analyze the performance
of our parallel rollback strategies and compare them with the
naı̈ve approach. We discuss related work in Section VI, and
finally draw conclusions in Section VII.

II. BACKGROUND & MOTIVATING EXAMPLES

In this section, we discuss some scenarios and challenges
of generating undo operations, in part based on our previous
work [6]. We also discuss the how previous work has addressed
these challenges.

1) Attaching or Detaching Virtual Disks
It is possible to invoke a detach or attach operation
any time, however doing so could cause failures
such as disk inconsistency. A rollback plan needs
to either stop the virtual machine, or unmount the
volume properly before detach or attach operations.
While cloud platforms offer logging service (e.g.
AWS CloudTrail [7]), using a log-based approach to
execute compensatory operations in reverse order will
not suffice in such scenarios.
Insight: Executing compensatory operations in
reverse chronological order does not rollback some
operations.

2) Creating and Deleting Clusters
Auto-scaling mechanisms, like on AWS, can create
and maintain a number of virtual machines in a
cluster, and automatically supply new machines to
replace ones that shut down or fail. In platforms like
AWS, creation of cluster cannot be compensated by
deletion. Deletion can only be performed when a
cluster has no machines. A rollback plan that needs to
delete a cluster has to first set the cluster size to zero,
and execute delete operation only after all machines
have been shut down.
Insight: Compensatory operation (provided by the
API) does not always reverse a forward operation.

3) Creating and Deleting Backups
Creating backup virtual machines (VMs) requires a
sequence of operations such as creating snapshot,
creating empty instances and volumes, and copying
data. To undo the effects, it suffices to simply
delete the backup. Execution of compensating
action in reverse order entails executing unnecessary
operations (e.g. copying data back).
Insight: The best rollback plan is not necessarily a
reverse sequence of compensatory actions.

4) Deleting a Virtual Disk
For delete operations, no compensating action may
be provided by the API. Although it is possible to
recover data stored in virtual disk by using backups,
the disk itself cannot be restored once it is deleted.
Also, any data added to or changed on the disk after
creating a backup is lost irreversibly.
Insight: Some operations provided by APIs are
irreversible.

5) Deploying Application at Scale
Deployment at scale can be complex and require
a large number of API invocations. For example,
deployment of new version of a web application may
require creating virtual instances and volumes, cre-
ating backups, changing auto-scaling configuration,
scaling instances up or down, configuring load bal-
ancers, changing DNS entries, etc. In such scenarios,
the probability of errors is high – especially if the
deployment is not automated.
Insight: Large-scale deployments require a large num-
ber of API invocations, and have higher probability
of failure.

Utilizing an AI planner, we can generate a sequence of
rollback actions. Typically, the planner generates the shortest
possible plan, i.e., with the least number of actions. This
requires a domain model of the API. Analyzing such a model
can provide guarantees which actions can be undone, and under
which circumstances [6].

Irreversible operations can be facilitated by providing a
wrapper around irreversible API operations, where the wrapper
replaces the irreversible actions with pseudo variants, e.g.,
delete is replaced with pseudo-delete. In [1], we proposed an
approach that wraps AWS’s cloud management API and uses a
formal domain model to generate undo sequences for rollback.
A single AI planning process generates undo sequence based
on the domain model and information of the current and a
previously checkpointed state of resources. Delete operations
are replaced with pseudo-delete: calling a delete operation will
only flag the resource as deleted; from that point on, wrapped
actions affecting the resource behave as if it actually was
deleted. When an administrator requests rollback, the resource
is undeleted; in contrast, only when the administrator commits
the changes, all flagged resources are actually deleted.

Our previous research did not address improving the ef-
ficiency of undo plan generation. In large scale deployment
scenarios, the approach fails to scale plan generation time with
number of operations. In this paper, we address this issue by
extending the previous work.

III. UNDO SYSTEM

In this section, we explain how the undo system discovers
and executes a sequence of undo operations, based on the state
of cloud resources.

A. Overview and API Wrapper

The system has two main parts: an API wrapper, which
intercepts calls to Amazon EC2 API and offers few additional



commands, and an AI planner, which generates rollback ac-
tions based on checkpointed states.

In a typical usage scenario, an administrator (or script)
issues a checkpoint command before making changes to re-
sources. The system then gathers relevant information about
the state of the cloud resources, and stores this as a checkpoint.
After creating checkpoints, administrators can make changes to
resources. At this point, the API wrapper transparently replaces
irreversible operation with reversible ones and offers rollback
operation. If an inadvertent change has been made, the admin-
istrator issues rollback command. In contrast, if the changes
are satisfactory, the administrator issues a commit command so
that irreversible changes are applied to cloud resources. After
the commit command is executed, the checkpoint is deleted
and rollback is not offered anymore.

To achieve this functionality, the API wrapper intercepts
EC2 commands, selectively delegates them to the API, and
handles commands for checkpointing, rollback, commit, and
undelete. When a rollback command is issued, it creates a
planning problem file, and invokes the AI planner to generate
list of rollback actions. The API wrapper collects and translates
these actions into a bash script, and executes it.

The API wrapper also facilitates pseudo-delete operation.
Delete operations on the EC2 API are not reversible. When
a delete command is executed, the system sets a delete
flag, indicating that a resource is deleted. The API wrapper
intercepts subsequent calls to deleted resource and indicates
that the resource does not exist. When a delete operation needs
to be reversed, the system removes this flag.

B. AI Planner

We model rollback operation as an AI planning task and
use a recent variant [8] of the FF planner [9] to find rollback
actions. The FF planner solves planning problem efficiently
by combining hill-climbing with systematic forward search,
and using heuristics to prune search space. Given a planning
task specified in the planning domain definition language
(PDDL) [10], it generates a list of actions that solves the task.

A planning task comprises objects, predicates, initial state,
goal specification, and a set of possible actions. A planner like
FF then finds a sequence from the set of actions that, starting
from the initial state, can reach the goal state. The variant
of FF that we use considers all paths on which the goal can
be reached, even if an action does not yield the most desired
outcome [8]. Figure 1 shows an illustration of the AI planner.

Objects, initial state, and goal specification are expressed
in a PDDL problem file. The undo system creates a PDDL
problem file based on checkpoints whenever a rollback opera-
tion is necessary. Given two checkpoints X and Y , created in
this order,

1) Objects are all known cloud resources,
2) Initial state is the state of cloud resources specified

in Y , the current state, and
3) Goal state is the state of cloud resources specified in

X , the original checkpoint.

The PDDL problem file is generated by the undo system to
achieve rollback, when this operation is called. Since the aim is

Problem Specification
 (PDDL)

AI Planner

Rollback PlanDomain Model
 (PDDL)

1st Checkpoint 2nd Checkpoint

goal
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init
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Fig. 1. Using an AI planner to find a rollback plan. The AI planner generates a
list of rollback actions based on a problem specification and a domain model
file. The problem specification is created using two checkpoints, where the
checkpoint created earlier comprises the goal state, and the checkpoint created
later comprises the initial state. The domain model is created manually by
modeling AWS EC2 API.

(define (problem EC2-0)
(:domain EC2)
(:objects

inst00 - tInstance
vol00 - tVolume
devName00 - tDeviceName
AZ0 - tAvailabilityZone)

(:init
(instanceRunning inst00)
(volumeInUse vol00)
(inAZ vol00 AZ0)
(inAZ inst00 AZ0)
(deviceNameInUse devName00 inst00)
(volumeAttachedToInstance vol00 inst00

devName00))
(:goal

(and
(volumeAttachedToInstance vol00 inst01

devName00)
(instanceRunning inst00))))

Listing 1. Sample PDDL problem file

to undo changes, the earlier checkpoint X is the goal, whereas
the later checkpoint with the current state of resources is the
starting point, the initial state. By reaching the goal, we can
effectively revert the changes that have taken place since the
original checkpoint was taken. Listing 1 shows an example of
a PDDL problem file.

Predicates and Actions are expressed in a PDDL domain
model file. In previous work [1], we have manually created
a PDDL domain file by modeling AWS EC2 APIs and re-
stricting the domain model to provide guarantees that actions
are undoable. If a formal model of the API or the system
behind it is available, a PDDL domain file may be generated
automatically. In [8], this was done for over 2,000 services
offered by SAP systems, using software engineering models
from the development of those systems. Listing 2 shows a
snippet of PDDL domain file.

In the variant of PDDL we employ, new resources cannot
be created out of nowhere. In the domain model, we use the
unary predicate notYetCreated to enable creation of resources.



(define (domain EC2)
(:types tAMI tInstance ...)
(:predicates

(hasAMI ?x0 - tInstance ?x1 - tAMI)
... )

(:constants ...)
(:action Run-Instance

:parameters (?ami - tAMI ?inst -
tInstance ?secGroup -
tSecurityGroup)

:precondition
(and

(notYetCreated ?inst)
(activeSecurityGroup ?secGroup))

:effect
(oneof

(and (instanceRunning ?inst)
(not (instanceStopped ?inst))
(not (notYetCreated ?inst))
(belongsToSecurityGroup ?inst ?

secGroup)
(hasAMI ?inst ?ami))

(unrecoverableError ?inst))))

Listing 2. Snippet of PDDL domain file

Additionally, the unary predicate deleted is used to indicate
the deletion of a resource. In relation to that, some minor post-
processing of initial and goal states is necessary: objects that
were notYetCreated in the original checkpoint, but have been
created by the time rollback is called, need to be marked as
deleted in the goal state since they cannot be “un-created”.
While these two states (not yet created and deleted) are very
similar – the respective object is not there – it is important
to distinguish them in our models: once a resource with a
specific ID has actually been deleted, for most resource types
on AWS it is impossible to get exactly this resource back. For
resource types like static IP addresses, this distinction can be
very important.

C. Additional Operations

Our undo system offers four additional operations: check-
point, rollback, commit, and undelete.

When a system administrator creates a checkpoint, the
system captures the state and relationships of cloud resources.
We use different kinds of checkpoints to speed up rollback
plan generation time. Checkpoints are explained in the next
section in detail.

When a rollback command is issued, the system executes
rollback operations based on the checkpoints. AI planning pro-
cesses find a list of compensating actions, which is converted
to a script, and executed.

Commit is a special command that finalizes delete opera-
tions. After an initial checkpoint has been taken, we replace
delete operations with pseudo-delete, where resources are not
actually deleted when the respective operation is called. Only
when a Commit command is invoked, the actual delete opera-
tion is executed for all pseudo-deleted resources. In addition,
any checkpoints taken up to calling commit are removed.

Finally, when delete operations are replaced with pseudo-
delete, it becomes possible to undelete resources. To do so,
it suffices to remove the “deleted” flag from the resource for
which undelete is called. Undelete is also available to the AI
planner, as the only operation in the PDDL domain model that
is not implemented by AWS but the API wrapper.

D. Checkpoints

A checkpoint is a reference that identifies state of resources
on the cloud at a point in time. It captures the state information
of all cloud resources, such as which VMs existed, which vol-
umes existed, which VMs were connected to which volumes,
etc.

When an administrator wants to have the ability to rollback,
she creates a checkpoint before making changes to resources
on the cloud. The undo system then gathers information
about state and relationships of cloud resources, and saves it
to persistent storage. Additionally, the system creates other
types of checkpoints depending on the number and type of
commands that are called between taking a checkpoint and
calling commit or rollback. If called, the rollback operation
uses these checkpoints to generate a rollback plan, which is
translated into an executable script.

The system uses three types of checkpoints: (i) man-
ual checkpoint, (ii) intermediate checkpoint, and (iii) current
checkpoint. All three types of checkpoints contain the same
kind of information about cloud resources and their states, for
use by the AI planner when generating rollback plans.

1) Manual Checkpoint: a manual checkpoint represents a
consistent state to which a system can be rolled back. This
is a checkpoint created by the system administrator manually
before making changes to resources on cloud. The manual
checkpoint information is stored persistently.

2) Intermediate Checkpoint: This is a checkpoint created
by the undo system after a certain number of change com-
mands, i.e., commands which change state of the system,
have been executed. Intermediate checkpoints are stored per-
sistently. They are used to improve rollback plan generation
time.

3) Current Checkpoint: This is a temporary checkpoint
object created by the system when rollback command is
triggered. The current checkpoint does not need to be stored
persistently, as it is used only when the rollback command is
executed.

Intermediate Checkpoint plays a significant role in improv-
ing the scalability of rollback plan generation. They allow us
to divide the planning process into smaller independent tasks,
where each task is responsible for generating rollback actions
between two adjacent checkpoints. Overall plan generation
time can be reduced significantly when these tasks are par-
allelized.

The API wrapper tracks the number of called change
commands, and creates an intermediate checkpoint after every
n-th change command. The number of commands, n, after
which an intermediate checkpoint is created is configurable.
All details about the creation of intermediate checkpoints are
hidden from the user.



One of the challenges in creating the checkpoints is that,
when cloud system is very large and there are too many cloud
resources to be captured, checkpoint creation time is relatively
long. Therefore, choosing the number of change commands
for intermediate checkpoints, n, represents a trade-off between
user experience and plan generation time.

IV. ROLLBACK STRATEGIES

Rollback is the core function of our undo system. The
rollback command returns the resources to their state at the
point in time when a manual checkpoint was created. The
undo system uses the AI planner to find a rollback plan of
undo actions, generates a bash script based on the rollback
plan, and executes the script.

Our approach comprises three strategies to perform roll-
back, which we describe below. They differ in how they use
the various checkpoints to generate a rollback plan. In the next
section, we comparatively evaluate the approaches and other
aspects.

A. Manual Checkpoint Rollback (MCR)

This rollback strategy is a naive approach where the
rollback command creates a PDDL problem file from solely
the current checkpoint and the manual checkpoint. The state
captured in the current checkpoint is used as initial state, and
the state captured in the manual checkpoint is used as goal
state.

The drawback of this approach is that it does not consider
plan length (number of actions in the undo plan). Because
planning is PSPACE-hard, the runtime of undo plan generation
using this approach will increase exponentially over increasing
plan length. The MCR strategy is the base case from our prior
work [1], and the goal of the other two strategies is to improve
over MCR when creating long rollback plans. To improve plan
generation time for large plans, they make use of intermediate
checkpoints.

B. Intermediate Checkpoint Rollback (ICR)

In this rollback strategy, user commands are tracked to
create intermediate checkpoints, as described in Section III-D.
As stated earlier, this strategy is unique to the rollback sce-
nario: only because we can observe the “do”-actions and can
create intermediate checkpoints, we can make use of them for
efficient rollback.

When the rollback command is invoked for ICR, the undo
system reads each pair of adjacent checkpoints in reverse
chronological order of their creation, and generates appropriate
problem PDDL files. This set of PDDL problem files is used by
the planner to generate a set of sequences of rollback actions.

For example, say there are 3 intermediate checkpoints
C1, C2, and C3, as well as the current checkpoint, CC, and the
manual checkpoint, MC. Then ICR creates four checkpoint
pairs: (CC,C3), (C3, C2), (C2, C1), and (C1,MC). For every
checkpoint pair (X,Y ), the system generates a planning task
with X as initial state and Y as goal state.

Rollback plans for each checkpoint pair are generated in
parallel. Once all partial rollback plans are available, they are

CLI Wrapper

AI Planner

Rollback Script

List of Actions

AI Planner

List of Actions

Partial Rollback 
Script

AI Planner

List of Actions

Partial Rollback 
Script

AI Planner

List of Actions

Partial Rollback 
Script

Execute Rollback

Rollback Script

ICRMCR

aws-rollback

SR

Fig. 2. Overview of all three rollback strategies: MCR, ICR and SR. After the
rollback command is issued, the API Wrapper creates a problem specification
and invokes the planner for only MCR, or in several times in parallel for ICR,
or both for SR. Partial rollback scripts generated by ICR are concatenated
into a single script. For SR, once a rollback plan is generated by either ICR
or MCR, the respective other planning processes are stopped and the rollback
plan is executed.

concatenated to form a single sequence of commands, the end-
to-end rollback plan, which is then translated and executed as
before.

C. Scalable Rollback (SR)

Scalable Rollback is a rollback strategy that combines
MCR and ICR. Figure 2 shows how all three strategies work,
and how SR combines the other two approaches.

SR runs MCR and ICR in parallel when the rollback
command is called. ICR, in turn, parallelises its planning
process into the generation of partial rollback scripts, and
concatenates them to a single script. The system executes
whichever rollback script is generated earliest. All parallel
computation is terminated once either MCR or ICR has gen-
erated a rollback script. As such, SR performs a race between
MCR and ICR.

V. EVALUATION

In this section we describe the experiments we conducted
to evaluate the performance of the three rollback strategies,
and discuss results and threats to validity. To compare the
three strategies from the previous section, we focus on plan
generation times when varying (i) plan length and (ii) the
number of cores available for planning.

A. Experiment Setup

In our test scenarios, configuration of a collection of in-
stances and volumes was modified by detaching and attaching
volumes to different instances. In our experiments, the number
of cloud resources forming the states is the same for all plan
lengths, so as to keep this factor stable. We created scenarios



where an optimal rollback plan has a plan length of m ∈
{16, 32, 48, 64, 80, 96, 112, 128, 144}. The scenarios were set
up so that the rollback plans generated by all approaches
had same number of steps. This was done to ensure that the
planning tasks were comparable over all three strategies.

For collecting the checkpoints, we ran scripts that started
with creating a manual checkpoint, executed the “do” actions
on AWS that were necessary to reach the state from which
we wanted to roll back while the undo system collected
intermediate checkpoints, and saved the final state as current
checkpoint. Therefore, the checkpoints were all based on
observation of real states of AWS resources. We then used
the collected checkpoints, but without always executing the
resulting rollback plans, to save time and cost.

Intermediate checkpoints were created with n = 20, i.e.,
after every 20th command that changes the state of the system.
As stated earlier, the number of commands n after which
intermediate checkpoint is created presents a trade-off in user
experience: on the one hand creating a checkpoint takes time,
therefore doing so less often (larger n) is preferable. On the
other hand, if n is too large, then rollback cannot profit much
from ICR or SR, and planning for rollback will take very long,
so a smaller n is preferable. In our usage scenarios, we found
that n = 20 was a good compromise.

Using the checkpoint sets collected as per above, we ran
plan generation time for each plan length and rollback strategy
for 25 iterations. We measured the time for plan generation
and report average values over the 25 iterations here. Since
standard deviation and standard error of mean were low for
the values from the 25 iterations, this number was deemed
sufficient.

The experiments used AWS EC2 machines for plan gen-
eration, namely C4.xlarge instances with 4.5 GB memory and
4 vCPUs, C4.2xlarge instances with 15 GB memory and 8
vCPUs, and C4.4xlarge instances with 30 GB memory and 16
vCPUs. It should be noted that a vCPU is a hyperthread on
a CPU core of an Intel Xeon processor.1 Therefore, 4 vCPUs
correspond to two physical cores, for instance.

B. Plan Generation Time vs. Rollback Strategy

Using the above setup, we compared the rollback plan gen-
eration time for different plan lengths and the three strategies:
Manual Checkpoint Rollback (MCR), Intermediate Checkpoint
Rollback (ICR), and Scalable Rollback (SR). The results of
this experiment is shown in Figure 3.

First we observe that the runtime of MCR indeed exhibits
exponential behavior: the respective curve is roughly a straight
line, but on a logarithmic scale. In contrast, the ICR and SR
strategies scale up almost linearly. As plan length increases,
ICR and SR offer more and more improvement over MCR in
terms of plan generation time.

While the ICR strategy uses all available vCPUs to generate
plans using intermediate checkpoints, SR allocates one vCPU
for generating rollback plan using MCR approach, and the
rest for ICR approach. Therefore the ICR approach finds
plans more quickly. Due to the fact that a vCPU is only a

1http://aws.amazon.com/ec2/instance-types/, accessed on 14/6/2015.
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Fig. 3. Runtime of plan generation (in seconds) using the strategies MCR,
ICR, and SR. Note that the y-axis uses a logarithmic scale. Plan generation
time was measured on a VM with 4 virtual CPU cores (C4.xlarge).

hyperthread, not a physical core, it is hard to hypothesize
on how the MCR computation influences the parallel threads.
From the data, it appears that ICR takes typically 20-30%
less time than SR, once an intermediate checkpoint has been
created.

C. Scalability

To measure how well SR can scale when given more
compute power, we ran the experiments where we varied plan
length and the machine type. In particular, we used three
different types of AWS C4 instances: C4.xlarge, C4.2xlarge,
and C4.4xlarge. The numbers for vCPUs and memory can be
found in Section V-A. The results of this experiment are shown
in Figure 4.

We observe that plan generation time improves strongly
when the number of vCPUs is increased from 4 to 8. However,
when it is increased from 8 to 16 vCPUs, we only see
minor improvement. While additional CPU cores can paral-
lelize the planning processes, the centralized overhead (reading
files, generating planning problems, managing threads, and
aggregating the results) attribute for an increasing runtime for
rollback plan generation. Our undo system prototype is not
fully optimized, so we believe more performance gains can be
realized by careful performance tuning.

Two points should be noted. First, while both of our
parallelizing strategies SR and ICR can benefit from additional
cores, MCR cannot. Second, the approach of using interme-
diate checkpoints is not generally applicable, but specifically
relies on the undo scenario where “do”-actions can be moni-
tored and intermediate checkpointing can be realized.

D. Discussion

The results shown here are highly encouraging with re-
spect to the direction of parallelizing the planning task using
intermediate checkpoints. Comparing the most extreme case,
i.e., rollback plan of length 144, MCR takes 394.08 seconds

http://aws.amazon.com/ec2/instance-types/
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as opposed to 9.91 seconds for SR on a 16vCPU machine.
While the comparison of MCR on a 4vCPU machine with SR
on a 16vCPU machine has to be taken with a grain of salt –
see the discussion below – this corresponds to a speedup of
factor 39.76. By circumventing the need for solving the whole
end-to-end planning task, we avoid the exponential behavior
of AI planning and achieve roughly linear scalability. There
are, however, limitations and threats to validity in our study,
which we will discuss next.

One of the limitations of our approach is that it does not
consider the quality of rollback plans. In the experiments here,
this has no effect since all strategies lead to the same plans
as per our experiment design. In general, though, rollback
plans generated using Intermediate Checkpoint Rollback are
not guaranteed to be optimal in terms of plan length. For
example, consider a case like Scenario 3) in Section II, where
a system administrator executes a large number of commands
and reaches a state which can be rolled back by a small
number of steps. Rollback plan generation using the ICR
approach will track all commands that change the state of
the system, consider all intermediate checkpoints, and likely
generate a suboptimal plan. In contrast, the MCR strategy
typically generates an optimal plan. By using the SR strategy,
an optimal plan is generated only if the MCR planning process
completes first. In our future work, we will consider alternative
methods that take plan quality into account. This is a tradeoff
that may require user input: how much longer are you willing
to wait for a better plan?

In this work there are few threats to validity:

1) Internal Validity: In our experiments, the memory size
is larger for machines with a larger number of CPU cores. Plan
generation time may or may not be affected by this factor –
the planner might not use the additional memory. We are, as
yet, not certain regarding the extent of the effect. Also, our
experiments were run on virtual machines beyond our direct
control. Computation on resources that are potentially shared
with other users of the cloud may be subject to significant
performance variation, and even machines of the same type

are known to have fluctuating performance [11].

2) External Validity: In our experiment scenarios, we per-
formed a subset of available actions (attach, detach, start, and
stop). We cannot guarantee that plan generation times will
be similar when a different subset of actions are performed.
Furthermore, a user’s network connection to the internet may
introduce latencies and outages that we did not account for in
our studies.

VI. RELATED WORK

Rollback methods can be checkpoint-based [12], [13], log-
based [12], [14], or shadow page-based [14]. Our approach is
checkpoint-based, where checkpoints store relevant informa-
tion on the disk. In our approach, rollback means achieving
physical state of cloud resources that match the state stored in
checkpoint. In contrast to other checkpoint based approaches,
where rollback is preformed by copying saved information
back to memory, our rollback operation requires execution of
API operations. This is similar to Sagas [15], where system
designers provide compensating actions for each operation, so
that undo operations would require execution of corresponding
compensation actions in reverse order. However, as argued in
Sections I and II, undoing actions in reverse chronological
order can be highly suboptimal.

AI planning has been used for system configuration,
e.g. [16]–[22], and cloud configuration, e.g. [23]–[25]. In [24]
planning is applied in a straight-forward fashion to the problem
of reaching user-specified goal. The work is integrated into
cloud management tools such as Facter, Puppet, and Con-
trolTier. In [25] hierarchial task network (HTN) planning is
applied at PaaS level for fault recovery. Similarly, [23] uses
HTN planning to achieve configuration changes for system
modeled in common interface model (CIM) standard. Besides
AI planning, POMPDPs (Partially Oservable Markov Decision
Processes) can be used for recovery process [26]. Using
intermediate checkpoints to speed up planning for undo has
not been the subject of any works we are aware of.

In [8], so-called Status and Action Management (SAM)
models which describes Business Object behaviors are auto-
matically translated to PDDL domain models. Since a formal
model comparable to SAM is not available for AWS EC2 [4],
we have manually modeled AWS EC2 API in PDDL form.
In [1], AI planning is used to generate rollback plans on cloud
operations. Our work extends this approach by dividing and
parallelizing planning processes.

VII. CONCLUSION

To reduce the impact of human-induced errors in API-
controlled cloud environments, it can be highly beneficial to
provide rollback of inadvertent changes made by an adminis-
trator. Our prior approach works well for rollback with a small
number of actions, but does not scale as the number of actions
increases.

In this paper, we present a scalable approach to rolling
back cloud operations using AI planning. Our undo system
intercepts API calls, creates checkpoints, uses an AI planner
to generate a plan that takes the system back to previous state,
and finally executes the plan.



We discuss three strategies to generate rollback plans.
Through experiments we demonstrate that, compared to the
naı̈ve approach, our Scalable Rollback approach improves plan
generation time as plan length increases. For the most extreme
case we tested, we observe speedup by a factor of nearly 40.

In future work, we plan to consider the quality of generated
plans, as well as further to optimize plan generation time by
filtering and reducing the state space the AI planner has to
consider.
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