
2 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 5 / $ 3 1 . 0 0 © 2 0 1 5 I E E E

FOCUS: RELEASE ENGINEERING

Achieving
Reliable High-
Frequency
Releases in Cloud
Environments
Liming Zhu, Donna Xu, An Binh Tran, Xiwei Xu, Len Bass, Ingo Weber,
and Srini Dwarakanathan, National ICT Australia

// Cloud applications with high-frequency releases often
rely heavily on automated tools and cloud infrastructure
APIs, both of which raise reliability issues. Experiments
show that tradeoffs are also involved in the choice between
heavily and lightly baked virtual-image approaches. //

CONTINUOUS DELIVERY IS re-
ducing release cycles from months
to days or even hours. For example,
Etsy.com had 4,004 releases into
the production environment in six
months, with an average of 20 re-
leases per day and 10 commits per
release.1 Such high-frequency re-
leases often rely on cloud infrastruc-
ture APIs and virtual machine (VM)
images for initial provision, and then

on deployment-related tools to com-
plete the deployment or upgrade.
However, this high frequency intro-
duces reliability challenges.

In the past, developers often con-
ducted infrequent, carefully moni-
tored deployment or upgrades dur-
ing scheduled downtime. Adopting
cloud computing has given devel-
opers the opportunity to automate
these tasks and moderately increase

the release frequency. Previously,
small reliability issues with the cloud
infrastructure APIs or automated
tools didn’t pose a considerable
threat because sufficient time existed
to resolve the occasional issue. How-
ever, this is no longer true when—
as our observations confirm—these
APIs are called thousands of times a
day and automated tools are used for
true continuous delivery.

Applications in the cloud typically
run on VMs, which are instances
launched from a VM image, which
typically takes one of two forms:

• Heavily baked images. The im-
age includes all the software and
most (if not all) of the configu-
ration to run in an instance.
(This form might also refer to
heavily baking the immutable or
phoenix servers, which aren’t ex-
pected to change after booting,
to prevent configuration drift.)

• Lightly baked images. The im-
age contains only some of the
necessary software, such as the
OS and middleware. Each in-
stance must load the remainder
of the necessary software after
being launched.

Considerable debate remains around
how much baking is necessary,
which further contributes to the reli-
ability issues.

Here, we compare these two phi-
losophies and report on specific re-
liability issues and tradeoffs. We
identify major contributing factors
at both the cloud-infrastructure and
deployment-tool levels. Our gen-
eral finding is that the more exter-
nal resources you involve in a de-
ployment—and the more you ask
of those resources—the more likely
you’ll experience errors or delays.
We propose various error-handling

cover image here

 MARCH/APRIL 2015 | IEEE SOFTWARE 3

practices and ways to resolve the is-
sues, including cloud API wrappers
and intermediary outcome valida-
tion to detect errors much earlier.

Motivating Example:
Rolling Upgrades
Assume an application running in
the cloud consists of a collection of
VM instances, instantiated from a
few different VM images. A new
machine image representing a new
release for one image (VMR) is avail-
able for deployment. The current
version of VMR is VA; the goal is to
replace the N instances currently ex-
ecuting VA with N instances execut-
ing the new version VB. A further
goal is to do this replacement while
providing the same service level to
VMR clients. That is, at any point
during replacement, at least N in-
stances running some VMR version
should be available for service. One
way to achieve this is with a rolling
upgrade.2

A rolling upgrade takes out of ser-
vice a small number of k instances
at a time currently running VA and
replaces them with k instances run-
ning VB. This technique can meet the
requirement for N instances running
some version of VMR by creating the
same number (k) of additional in-
stances running VB as are simulta-
neously being upgraded—thus over-
provisioning for the upgrade. The
replacement usually takes on the or-
der of minutes. If k is set to 10 per-
cent of N, a rolling upgrade can usu-
ally take less than an hour—even for
hundreds or thousands of instances.
Rolling upgrades are popular; their
virtue is that they require only a few
additional instances.

During an upgrade, three cat-
egories of failures can occur. Pro-
visioning failures occur during re-
placement—specifically, when one

upgrade step produces incorrect re-
sults. Here, we examine these fail-
ures by comparing reliability issues
during provisioning using heavily
and lightly baked images.

Logical failures are related to the
application being upgraded, such as
version incompatibility or interin-
stance dependencies. These failures
are application-specific; we don’t
discuss them here.

Instance failures are a normal
occurrence in the cloud. They can
be due to failure of the underlying

physical machine, the network, or
a (networked) disk. Because they’re
not specific to deployment and up-
grades, we don’t discuss them here.
They might occur within or outside
the rolling-upgrade period and can
be dealt with using traditional fault-
tolerance mechanisms.

Experiments and
Observations
We performed rolling upgrades us-
ing Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) and
OpsWorks.

OpsWorks is Amazon’s auto-
mated DevOps (development and op-
erations) tool, which integrates with
Chef configuration management to
fully provision an application ser-
vice. In OpsWorks, an application
service has a set of life-cycle events
associated with custom-built Chef
recipes. By calling operations from
the OpsWorks API and other EC2
APIs, we can replace a configurable

number of old application service in-
stances with new ones. We’re dealing
with both cloud infrastructure APIs
(EC2 APIs) and deployment soft-
ware (OpsWorks, Chef tools, APIs,
and so on). Both types contribute to
the upgrade’s reliability.

We configured the rolling up-
grade to support both the heav-
ily and lightly baked approaches.
Heavily baked upgrades used a cus-
tom Amazon Machine Image (AMI)
with built-in recipes, which largely
performed OpsWorks-related agent

setups and simple default configura-
tions. Lightly baked upgrades used a
basic AMI with more complex cus-
tom Chef recipes, which performed
more customized actions for install-
ing additional software. These up-
grades required more actions after
instantiation and relied much more
on the deployment software (Op-
sWorks and Chef) than the heavily
baked upgrades.

From an abstract viewpoint, the
two approaches perform the same
task: a rolling upgrade of an appli-
cation. In our experiments, the ap-
plication stack was a standard three-
tier (Web, application, and database
server) deployment of a content man-
agement system. We upgraded an ap-
plication server (Tomcat) because
it was located centrally in the stack
with complex dependencies. We per-
formed rolling upgrades to a cluster
of 72 servers, with k set to 3, and
recorded timings of different phases
and reliability problems in each case.

The more external resources you involve
in a deployment, the more likely you’ll

experience errors or delays.

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

Figure 1 shows that, overall,
lightly baked upgrades were less reli-
able than heavily baked upgrades.

We recorded the time distribution
for the four upgrade phases:

• Stopping or terminating. The
API operation for stopping or
terminating an instance was
called.

• Pending. OpsWorks is waiting
for a new EC2 instance to start.

• Booting. An EC2 instance is
booting.

• Running setup. OpsWorks is
running Chef recipes.

Figure 2 shows the time distribu-
tion. We performed statistical tests
and observed statistical significance

in the timing profiles and all other
reported timing differences. We have
two key observations. First, lightly
baked upgrades usually completed
faster, typically in 4 to 6.5 min.
Most heavily baked upgrades took 8
to 10.5 min.

Second, lightly baked upgrades
had a broader distribution than
heavily baked upgrades. The lightly
baked upgrades’ completion times
could be significantly longer; their
distribution had considerably longer
tails (see the sidebar).

These two observations demon-
strate that heavily baked upgrades
were stable but usually took longer.

Figure 3 shows the time distribu-
tions for the four upgrade phases.
For stopping and pending, the distri-
butions for lightly and heavily baked
upgrades are relatively close on each
time interval. For booting, heavily
baked upgrades take considerably
longer. What exactly OpsWorks does

Restart
 once
 11%

Create new 1%

Successful
88%

Successful
82%

Restart
once
 15%

Restart twice 3%

(a) (b)

3.5–4.0

40

35

30

25

20

15

10

5

0

In
st

an
ce

s
(%

)

4.0–4.5 4.5–5.0 5.0–5.5 5.5–6.0 6.0–6.5 6.5–7.0 7.0–7.5 7.5–8.0 8.0–8.5 8.5–9.0 9.0–9.5 10.0–10.5 >10.5

Heavily baked image
Lightly baked image

9.5–10.0

Time (min.)

FIGURE 1. Success rates for (a) heavily and (b) lightly baked upgrades. Heavily baked
upgrades were generally more reliable.

FIGURE 2. The time distribution for upgrading one instance. Lightly baked upgrades usually completed faster, with most instances
taking 4 to 6.5 min.

 MARCH/APRIL 2015 | IEEE SOFTWARE 5

with an instance in this phase isn’t
clear: the documentation states only
that the OpsWorks agent is installed.
Users reported various problems in
this phase on the support forum.
Lightly baked upgrades (including
booting and running setup) can take
longer, which might be attributable
to unreliable on-demand service in-
stallation and configuration.

To better understand the unreli-
ability’s sources, we compared the
AWS-related API calls and Chef rec-
ipe size between the two approaches.
To capture the API calls, we used
Amazon CloudTrail, which can log
all AWS API calls. Lightly baked up-
grades triggered 40 EC2 API calls,

THE LONG TAIL
A probability distribution has a long tail if a larger proportion of the population re-
sides in the tail than there would be under a normal distribution. In other words,
the 68–95–99.7 rule states that the expected percentages of population lie
within one, two, or three standard deviations from the mean in a normal distribu-
tion, respectively. If the proportion is larger than these percentages, the tail is
long. This often has considerable implications for large-scale applications;1 such
implications extend over the large-scale applications themselves onto operations
on these applications.2

References
 1. J. Dean and L.A. Barroso, “The Tail at Scale,” Comm. ACM, vol. 56, no. 2, 2013, pp. 74–80.
 2. X. Xu et al., “POD-Diagnosis: Error Diagnosis of Sporadic Operations on Cloud Applications,”

Proc. 44th Ann. Int’l Conf. Dependable Systems and Networks, 2014, pp. 1–12.

(a)

100
90
80
70
60
50
40
30
20
10
0

In
st

an
ce

s
(%

)

Time (min.)

100
90
80
70
60
50
40
30
20
10
0

(c)

100
90
80
70
60
50
40
30
20
10
0

0.0–
0.5

0.0–
0.5

1.0–
1.5

1.0–
1.5

1.5–
2.0

1.5–
2.0

0.5–
1.0

0.5–
1.0

2.0–
2.5

2.5–
3.0

2.5–
3.0

3.0–
3.5

3.0–
3.5

3.5–
4.0

3.5–
4.0

4.0–
4.5

4.5–
5.0

5.0–
5.5

5.5–
6.0

100
90
80
70
60
50
40
30
20
10
0

(a)

100
90
80
70
60
50
40
30
20
10
0

In
st

an
ce

s
(%

)

(a)

100
90
80
70
60
50
40
30
20
10
0

0.0–
0.5

0.0–
0.5

1.0–
1.5

1.0–
1.5

1.5–
2.0

1.5–
2.0

0.5–
1.0

0.5–
1.0

2.0–
2.5

2.5–
3.0

2.5–
3.0

3.0–
3.5

3.0–
3.5

3.5–
4.0

3.5–
4.0

4.0–
4.5

4.5–
5.0

5.0–
5.5

Time (min.)

100
90
80
70
60
50
40
30
20
10
0

In
st

an
ce

s
(%

)

Time (min.)

100
90
80
70
60
50
40
30
20
10
0

100
90
80
70
60
50
40
30
20
10
0
0.0–0.5 1.0–1.5 1.5–2.00.5–1.0 >2.0

(b)

100
90
80
70
60
50
40
30
20
10
0

In
st

an
ce

s
(%

)

Time (min.)

100
90
80
70
60
50
40
30
20
10
0

(d)

100
90
80
70
60
50
40
30
20
10
0
0.0–0.25 0.5–0.75 0.75–1.00.25–10.5 1.0–1.25 1.25–.5

Heavily baked image
Lightly baked image

FIGURE 3. Time spent per status. (a) Stopping. (b) Pending. (c) Booting. (d) Running setup. For booting, the heavily baked upgrades
took considerably longer; OpsWorks users also reported various problems during this phase in the user support forums.

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

whereas heavily baked upgrades
triggered 37. This difference isn’t
material in terms of the AWS basic
infrastructure contributing to unreli-
ability. For the Chef recipes, heavily
baked upgrades had 69 OpsWorks
API calls per upgrade, whereas
lightly baked upgrades had 142.

Many of the errors came from
Chef and the OpsWorks agent that
acted as a wrapper around the Chef
agent. We thus suspect that the ad-
ditional Chef- or OpsWorks-related
actions in the lightly baked upgrades
were the major contributors to slow-
ness, the long tail, and unreliability.
Next, as we describe later, we inves-
tigated the factors and tried to estab-
lish whether many of the additional
actions followed the long-tail char-
acteristics in completion time.

During lightly baked upgrades,
Chef’s actions constituted three
main steps:

 1. Execute the update_custom_cook-
books deployment action. This
step updated new custom Chef
cookbooks from an external Git
repository to the local instance
cache over the network. In our
case, the recipes were about the
installation of a new Tomcat ver-
sion (from version 6 to 7).

 2. Execute the uninstallation-
related execute_recipes deployment
action. This ran the tomcat::uninstall
Chef recipe to remove the old
Tomcat version.

 3. Execute the installation-related
execute_recipes deployment ac-
tion. This ran the tomcat::setup

and tomcat::configure Chef recipes
to install and configure the new
Tomcat version.

As Figure 4 shows, all three steps
clearly showed a long tail. On fur-
ther examining the time stamps in
logs, we observed two major con-
tributors to the long tails.

The first surprise is the delay in
action commands being acknowl-
edged, executed, and reported,
which contributed approximately 28
percent to the overall long-tail char-
acteristics. Figure 5 shows the three
delay types happening during each
command’s execution (excluding the
execution itself):

• The delay from when the com-
mand was created until AWS

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

14

12

10

8

6

4

2

0
1,000

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

(a)

7

6

5

4

3

2

1

0

Execution time (s)

Execution time (s)
0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

(b)

7

6

5

4

3

2

1

0
0 50 100 150 200 250 300 350 400 450 500

Execution time (s)

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n
tim

e

(c)

FIGURE 4. The execution time for the major steps of lightly baked upgrades. (a) update_custom_cookbooks. (b) execute_recipes—uninstall
Tomcat 6. (c) execute_recipes—install Tomcat 7. All three steps clearly showed a long tail.

 MARCH/APRIL 2015 | IEEE SOFTWARE 7

acknowledged it for execution
(labeled A in Figure 5). In our
observations, this delay was
large (from 10 to 300 seconds).

• A small delay from when AWS
reported to have acknowledged
the command and Chef actually
started running on the instance
(we got this information from
the Chef log). This delay is
labeled B in Figure 5. It might
have been caused by API calls or
a delay in the OpsWorks agent
triggering Chef on the instance.
It was a few seconds at most.

• A small delay from when the
Chef run completed on the in-
stance until AWS reported that
the command completed (labeled
C in Figure 5). The delay time
and reasons were similar to the
previous small delay.

Figure 6 shows the time distribu-
tion for all three delays.

The second contributor to the
delays stemmed from external re-
sources—mostly, the software re-
pository and dependency servers—
which made up approximately 70
percent of the overall long-tail distri-
bution. Downloading software from
an external repository for installa-
tion or even resolving dependencies
before removing an old version can
have considerable long-tail char-
acteristics. The remaining actions,
such as configuring and updating
cookbooks from local cache, show
no such characteristics. Common
industry practices use a local mirror
server or some redundancy to relieve
the issues around downloading from
repositories.

One possibility is that the de-
lays were due to Chef’s somewhat
unpredictable pull model, in which
the configuration converges peri-
odically toward the desired state.

However, for OpsWorks and our
rolling upgrade, this was trans-
formed more into a push model:
different types of Chef recipes were
set to converge when triggered by
specific conditions. For example,
Chef recipes in OpsWorks’ “config-
ure” life-cycle event ran on all in-
stances every time an instance in
the OpsWorks stack entered or left
the online state (for example, to
start, stop, or terminate). So, Chef’s
pull model wasn’t a major factor in
this setup.

Discussion and
Threats to Validity
This study has some obvious limi-
tations. First, it built on AWS using
OpsWorks and Chef, without testing
other platforms.

Second, our comparison is lim-
ited: we didn’t consider image prep-
aration time, which might differ
considerably between the heavily
and lightly baked approaches. In the
past, images were often prepared by
starting an instance, installing the
required software, and resealing it as

Command
created
by AWS

Command
acknowledged

by AWS

Small delay
(a few seconds)

Command
completed and

reported by AWS

Small delay
(a few seconds)

Update cookbooks,
install Tomcat, and so on

Chef running on instancesA B C

8
7
6
5
4
3
2
1
0
0 25 50 75 100 125 150 175 200 225 250 275 300

Pe
rc

en
ta

ge
 o

f d
el

ay
 ti

m
e

Delay (s)

FIGURE 5. The three types of delays during each command’s execution. Label A
indicates the delay from when the command was created until AWS acknowledged it for
execution. B indicates the delay from when AWS reported to have acknowledged the
command and Chef actually started running on the instance. C indicates the delay from
when the Chef run completed on the instance until AWS reported that the command
completed.

FIGURE 6. The total delay in command processing and reporting. This takes into
account the three delays in Figure 5.

8 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: RELEASE ENGINEERING

an image before provisioning. In that
process, time and reliability were
major concerns.

However, the improved current
practice is to use a dedicated baking
instance3 that modifies a mounted
image directly, considerably speed-
ing up preparation. The process is
also more reliable because the im-
age is never started with on-demand
configuration to get the required
software. We believe the time and re-
liability issues are largely resolved in
practice.

Third, 72 servers isn’t a huge
setup. We believe the outliers in the
tail are proportional to the total
number of servers upgraded in larger
settings. But the outliers’ effect on
the total upgrade completion time
might also depend on a rolling up-
grade’s granularity.

Only a few related approaches ex-
ist in this area. When a release pro-
cess is automated through scripts,
error-handling mechanisms in the

scripting or high-level languages
can detect and react to errors and
reliability issues through exception
handling. For example, error han-
dlers in Netflix’s Asgard (https://
github.com/Netflix/asgard) and
Chef (www.getchef.com/chef) react
to detected errors. These exception-
handing mechanisms are best suited
for single-language environments,
but continuous delivery often must
deal with different types of error re-
sponses from different systems. Also,
exception handling has only local

information rather than global vis-
ibility when an exception is caught.
So, external validation checks based
on more global information are
useful.

Our Proposed Solution
We now introduce some early solu-
tions to the problems we’ve identi-
fied; our primary goal is to shorten
the long tail in some operations.

To deal with the reliability is-
sues, we incorporate fail fast, retry,
and alternative actions in the rolling-
upgrade tools. In our rolling upgrade
using AWS OpsWorks, we imple-
mented the following four error de-
tection and handling mechanisms,
which considerably reduced the reli-
ability issues.

First, our system actively tracks
each instance’s status through the
life cycle and the time spent in each
life-cycle stage. The information is
then used by approaches that we de-
scribe later.

Second, we implement asynchro-
nous upgrades. For a rolling-upgrade
granularity of k (k > 1), we don’t wait
until each wave is finished before
starting the next wave. When a sin-
gle instance has been upgraded and
is online again, another instance is
upgraded straightaway. The granu-
larity then ensures that k servers are
upgraded concurrently at any point
in time. This also prevents recurring
errors in an instance from blocking
the whole upgrade. Should the prob-
lem recur on all subsequently started

instances, the whole upgrade will
fail-stop or be rolled back.

Third, we use time-outs specific
to each status to fail fast. We col-
lected historical data for upgrades
and use the 95th percentile as the de-
fault (but configurable) time-out.

Finally, we provide stop–restart,
replace, deploy without restart, and
direct triggering of life-cycle events
as alternatives for many actions.

In addition, OpsWorks heavily
builds on Chef and, as we’ve seen,
contributes considerably to unreli-
ability. So, we implemented mini-
test-based validation (https://github.
com/calavera/minitest-chef-handler)
of intermediary outcomes for the
Chef portion. Previously, these tests
were used during development; we’re
using them during production runs
to detect errors early. These tests go
beyond what Chef error reports or
logs are reporting. They validate the
expected final outcomes—not just
inputs to a Chef execution or the ex-
ecution itself.

Finally, for EC2 API reliability is-
sues, we analyzed their characteris-
tics and implemented an API wrap-
per to solve the problem.4

A s our investigation clearly
shows, the reliability prob-
lems of deployment infra-

structure and tools—excluding script
and user errors—are considerable
under the lightly baked approach
and exhibit long-tail characteristics
at scale. Key contributing factors
here include infrastructure API re-
liability, command processing and
reporting delays, and dealing with
external resources. The mechanisms
we described in this article are good
strategies to alleviate these prob-
lems. Furthermore, we’re developing
Process-Oriented Dependability, a

The reliability problems of deployment
infrastructure and tools are considerable

under the lightly baked approach.

 MARCH/APRIL 2015 | IEEE SOFTWARE 9

framework that works with existing
deployment tools by analyzing the
logs they produce.5

The heavily baked approach can
incur considerable preparation over-
head because even minor changes
warranting a release require prepar-
ing a complex image. The numerous
images that result must be stored and
managed, creating “image sprawl.”
Also, an application might comprise
many different images that must cor-
respond to each other in some way.
This monolithic approach often re-
quires considerable coordination,
thus delaying deployment.

Acknowledgments
The Australian government’s Department
of Communications and the Australian Re-
search Council’s ICT Centre of Excellence
Program fund National ICT Australia.

References
 1. W. Stuckey, “Managing Experimentation

in a Continuously Deployed Environment,”
2013; www.slideshare.net/InfoQ
/managing-experimentation-in-a
-continuously-deployed-environment.

 2. Asgard, Netflix, 2014; https://github.com
/Netflix/asgard.

 3. Aminator, Netflix, 2013; https://github
.com/Netflix/aminator.

 4. Q. Lu et al., “Mechanisms and Architec-
tures for Tail-Tolerant System Operations
in Cloud,” Proc. 6th Usenix Workshop
Hot Topics in Cloud Computing, 2014;
www.usenix.org/conference/hotcloud14
/workshop-program/presentation/lu.

 5. X. Xu et al., “POD-Diagnosis: Error Di-
agnosis of Sporadic Operations on Cloud
Applications,” Proc. 44th Ann. Int’l Conf.
Dependable Systems and Networks, 2014,
pp. 1–12.

LIMING ZHU is a research group leader and principal
researcher at National ICT Australia, and a conjoint lecturer at
the University of New South Wales and University of Sydney. His
research interests include software architecture and depend-
able systems. Zhu received a PhD in software engineering from
the University of New South Wales. Contact him at liming.zhu@
nicta.com.au.

DONNA XU is a vacation student at the Commonwealth
Scientific and Industrial Research Organisation. Her research
interests include cloud computing, dependability, and big-data
processing. Xu received a BCST (Honors) in computer science
from the University of Sydney. Contact her at donna.xu@nicta.
com.au.

AN BINH TRAN is a research assistant at National ICT Aus-
tralia. His research interests include development operations,
cloud computing, dependability, and big data. Tran received a
BSc (Honors) in computer science from the University of New
South Wales. Contact him at anbinh.tran@nicta.com.au.

XIWEI XU is a researcher at National ICT Australia. Her
research interests include dependability, cloud computing,
development operations, and big data, as well as software
architecture, business processes, and service computing. Xu
received a PhD in software engineering from the University of
New South Wales. Contact her at xiwei.xu@nicta.com.au.

LEN BASS is a senior principal researcher at National ICT
Australia. His research interests include operating systems, da-
tabase management systems, user interface software, software
architecture, product line systems, and computer operations.
He’s coauthor of DevOps: A Software Architect’s Perspective
(Addison-Wesley, 2015), Software Architecture in Practice
(Addison-Wesley, 2012), and Documenting Software Architec-
tures: Views and Beyond (Addison-Wesley, 2010). Bass received
a PhD in computer science from Purdue University. Contact him
at len.bass@nicta.com.au.

INGO WEBER is a senior researcher in the Software Systems
Research Group at National ICT Australia and an adjunct senior
lecturer in computer science and engineering at the University
of New South Wales. His research interests include cloud com-
puting, development and operations, business process manage-
ment, and AI. He’s coauthor of DevOps: A Software Architect’s
Perspective (Addison-Wesley, 2015). Weber received a PhD in
computer science from the University of Karlsruhe. Contact him
at ingo.weber@nicta.com.au.

SRINI DWARAKANATHAN is a research intern at National
ICT Australia. His research interests include distributed sys-
tems, cloud computing, high availability, and software-defined
networking. Dwarakanathan received an MS in computer and
information science from the University of Pennsylvania. Con-
tact him at srini.nathan@nicta.com.au.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

