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FOCUS: RELEASE ENGINEERING

Achieving 
Reliable High-
Frequency 
Releases in Cloud 
Environments
Liming Zhu, Donna Xu, An Binh Tran, Xiwei Xu, Len Bass, Ingo Weber, 
and Srini Dwarakanathan, National ICT Australia

// Cloud applications with high-frequency releases often 
rely heavily on automated tools and cloud infrastructure 
APIs, both of which raise reliability issues. Experiments 
show that tradeoffs are also involved in the choice between 
heavily and lightly baked virtual-image approaches. //

CONTINUOUS DELIVERY IS re-
ducing release cycles from months 
to days or even hours. For example, 
Etsy.com had 4,004 releases into 
the production environment in six 
months, with an average of 20 re-
leases per day and 10 commits per 
release.1 Such high-frequency re-
leases often rely on cloud infrastruc-
ture APIs and virtual machine (VM) 
images for initial provision, and then 

on deployment-related tools to com-
plete the deployment or upgrade. 
However, this high frequency intro-
duces reliability challenges.

In the past, developers often con-
ducted infrequent, carefully moni-
tored deployment or upgrades dur-
ing scheduled downtime. Adopting 
cloud computing has given devel-
opers the opportunity to automate 
these tasks and moderately increase 

the release frequency. Previously, 
small reliability issues with the cloud 
infrastructure APIs or automated 
tools didn’t pose a considerable 
threat because sufficient time existed 
to resolve the occasional issue. How-
ever, this is no longer true when—
as our observations confirm—these 
APIs are called thousands of times a 
day and automated tools are used for 
true continuous delivery.

Applications in the cloud typically 
run on VMs, which are instances 
launched from a VM image, which 
typically takes one of two forms:

• Heavily baked images. The im-
age includes all the software and 
most (if not all) of the configu-
ration to run in an instance. 
(This form might also refer to 
heavily baking the immutable or 
phoenix servers, which aren’t ex-
pected to change after booting, 
to prevent configuration drift.)

• Lightly baked images. The im-
age contains only some of the 
necessary software, such as the 
OS and middleware. Each in-
stance must load the remainder 
of the necessary software after 
being launched.

Considerable debate remains around 
how much baking is necessary, 
which further contributes to the reli-
ability issues.

Here, we compare these two phi-
losophies and report on specific re-
liability issues and tradeoffs. We 
identify major contributing factors 
at both the cloud-infrastructure and 
deployment-tool levels. Our gen-
eral finding is that the more exter-
nal resources you involve in a de-
ployment—and the more you ask 
of those resources—the more likely 
you’ll experience errors or delays. 
We propose various error-handling 
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practices and ways to resolve the is-
sues, including cloud API wrappers 
and intermediary outcome valida-
tion to detect errors much earlier.

Motivating Example: 
Rolling Upgrades
Assume an application running in 
the cloud consists of a collection of 
VM instances, instantiated from a 
few different VM images. A new 
machine image representing a new 
release for one image (VMR) is avail-
able for deployment. The current 
version of VMR is VA; the goal is to 
replace the N instances currently ex-
ecuting VA with N instances execut-
ing the new version VB. A further 
goal is to do this replacement while 
providing the same service level to 
VMR clients. That is, at any point 
during replacement, at least N in-
stances running some VMR version 
should be available for service. One 
way to achieve this is with a rolling 
upgrade.2

A rolling upgrade takes out of ser-
vice a small number of k instances 
at a time currently running VA and 
replaces them with k instances run-
ning VB. This technique can meet the 
requirement for N instances running 
some version of VMR by creating the 
same number (k) of additional in-
stances running VB as are simulta-
neously being upgraded—thus over-
provisioning for the upgrade. The 
replacement usually takes on the or-
der of minutes. If k is set to 10 per-
cent of N, a rolling upgrade can usu-
ally take less than an hour—even for 
hundreds or thousands of instances. 
Rolling upgrades are popular; their 
virtue is that they require only a few 
additional instances.

During an upgrade, three cat-
egories of failures can occur. Pro-
visioning failures occur during re-
placement—specifically, when one 

upgrade step produces incorrect re-
sults. Here, we examine these fail-
ures by comparing reliability issues 
during provisioning using heavily 
and lightly baked images.

Logical failures are related to the 
application being upgraded, such as 
version incompatibility or interin-
stance dependencies. These failures 
are application-specific; we don’t 
discuss them here.

Instance failures are a normal 
occurrence in the cloud. They can 
be due to failure of the underlying 

physical machine, the network, or 
a (networked) disk. Because they’re 
not specific to deployment and up-
grades, we don’t discuss them here. 
They might occur within or outside 
the rolling-upgrade period and can 
be dealt with using traditional fault-
tolerance mechanisms.

Experiments and 
Observations
We performed rolling upgrades us-
ing Amazon Web Services (AWS) 
Elastic Compute Cloud (EC2) and 
OpsWorks.

OpsWorks is Amazon’s auto-
mated DevOps (development and op-
erations) tool, which integrates with 
Chef configuration management to 
fully provision an application ser-
vice. In OpsWorks, an application 
service has a set of life-cycle events 
associated with custom-built Chef 
recipes. By calling operations from 
the OpsWorks API and other EC2 
APIs, we can replace a configurable 

number of old application service in-
stances with new ones. We’re dealing 
with both cloud infrastructure APIs 
(EC2 APIs) and deployment soft-
ware (OpsWorks, Chef tools, APIs, 
and so on). Both types contribute to 
the upgrade’s reliability.

We configured the rolling up-
grade to support both the heav-
ily and lightly baked approaches. 
Heavily baked upgrades used a cus-
tom Amazon Machine Image (AMI) 
with built-in recipes, which largely 
performed OpsWorks-related agent 

setups and simple default configura-
tions. Lightly baked upgrades used a 
basic AMI with more complex cus-
tom Chef recipes, which performed 
more customized actions for install-
ing additional software. These up-
grades required more actions after 
instantiation and relied much more 
on the deployment software (Op-
sWorks and Chef) than the heavily 
baked upgrades.

From an abstract viewpoint, the 
two approaches perform the same 
task: a rolling upgrade of an appli-
cation. In our experiments, the ap-
plication stack was a standard three-
tier (Web, application, and database 
server) deployment of a content man-
agement system. We upgraded an ap-
plication server (Tomcat) because 
it was located centrally in the stack 
with complex dependencies. We per-
formed rolling upgrades to a cluster 
of 72 servers, with k set to 3, and 
recorded timings of different phases 
and reliability problems in each case.

The more external resources you involve 
in a deployment, the more likely you’ll 

experience errors or delays. 
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Figure 1 shows that, overall, 
lightly baked upgrades were less reli-
able than heavily baked upgrades.

We recorded the time distribution 
for the four upgrade phases:

• Stopping or terminating. The 
API operation for stopping or 
terminating an instance was 
called.

• Pending. OpsWorks is waiting 
for a new EC2 instance to start.

• Booting. An EC2 instance is 
booting.

• Running setup. OpsWorks is 
running Chef recipes.

Figure 2 shows the time distribu-
tion. We performed statistical tests 
and observed statistical significance 

in the timing profiles and all other 
reported timing differences. We have 
two key observations. First, lightly 
baked upgrades usually completed 
faster, typically in 4 to 6.5 min. 
Most heavily baked upgrades took 8 
to 10.5 min.

Second, lightly baked upgrades 
had a broader distribution than 
heavily baked upgrades. The lightly 
baked upgrades’ completion times 
could be significantly longer; their 
distribution had considerably longer 
tails (see the sidebar).

These two observations demon-
strate that heavily baked upgrades 
were stable but usually took longer.

Figure 3 shows the time distribu-
tions for the four upgrade phases. 
For stopping and pending, the distri-
butions for lightly and heavily baked 
upgrades are relatively close on each 
time interval. For booting, heavily 
baked upgrades take considerably 
longer. What exactly OpsWorks does 
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with an instance in this phase isn’t 
clear: the documentation states only 
that the OpsWorks agent is installed. 
Users reported various problems in 
this phase on the support forum. 
Lightly baked upgrades (including 
booting and running setup) can take 
longer, which might be attributable 
to unreliable on-demand service in-
stallation and configuration.

To better understand the unreli-
ability’s sources, we compared the 
AWS-related API calls and Chef rec-
ipe size between the two approaches. 
To capture the API calls, we used 
Amazon CloudTrail, which can log 
all AWS API calls. Lightly baked up-
grades triggered 40 EC2 API calls, 

THE LONG TAIL
A probability distribution has a long tail if a larger proportion of the population re-
sides in the tail than there would be under a normal distribution. In other words, 
the 68–95–99.7 rule states that the expected percentages of population lie 
within one, two, or three standard deviations from the mean in a normal distribu-
tion, respectively. If the proportion is larger than these percentages, the tail is 
long. This often has considerable implications for large-scale applications;1 such 
implications extend over the large-scale applications themselves onto operations 
on these applications.2
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 1. J. Dean and L.A. Barroso, “The Tail at Scale,” Comm. ACM, vol. 56, no. 2, 2013, pp. 74–80.
 2. X. Xu et al., “POD-Diagnosis: Error Diagnosis of Sporadic Operations on Cloud Applications,” 
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whereas heavily baked upgrades 
triggered 37. This difference isn’t 
material in terms of the AWS basic 
infrastructure contributing to unreli-
ability. For the Chef recipes, heavily 
baked upgrades had 69 OpsWorks 
API calls per upgrade, whereas 
lightly baked upgrades had 142.

Many of the errors came from 
Chef and the OpsWorks agent that 
acted as a wrapper around the Chef 
agent. We thus suspect that the ad-
ditional Chef- or OpsWorks-related 
actions in the lightly baked upgrades 
were the major contributors to slow-
ness, the long tail, and unreliability. 
Next, as we describe later, we inves-
tigated the factors and tried to estab-
lish whether many of the additional 
actions followed the long-tail char-
acteristics in completion time.

During lightly baked upgrades, 
Chef’s actions constituted three 
main steps:

 1. Execute the update_custom_cook-
books deployment action. This 
step updated new custom Chef 
cookbooks from an external Git 
repository to the local instance 
cache over the network. In our 
case, the recipes were about the 
installation of a new Tomcat ver-
sion (from version 6 to 7).

 2. Execute the uninstallation-
related execute_recipes deployment 
action. This ran the tomcat::uninstall 
Chef recipe to remove the old 
Tomcat version.

 3. Execute the installation-related 
execute_recipes deployment ac-
tion. This ran the tomcat::setup 

and tomcat::configure Chef recipes 
to install and configure the new 
Tomcat version.

As Figure 4 shows, all three steps 
clearly showed a long tail. On fur-
ther examining the time stamps in 
logs, we observed two major con-
tributors to the long tails.

The first surprise is the delay in 
action commands being acknowl-
edged, executed, and reported, 
which contributed approximately 28 
percent to the overall long-tail char-
acteristics. Figure 5 shows the three 
delay types happening during each 
command’s execution (excluding the 
execution itself):

• The delay from when the com-
mand was created until AWS 

0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1,300 1,400 1,500 1,600 1,700

14

12

10

8

6

4

2

0
1,000

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n 
tim

e

(a)

7

6

5

4

3

2

1

0

Execution time (s)

Execution time (s)
0 50 100 150 200 250 300 350 400 450 500

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n 
tim

e

(b)

7

6

5

4

3

2

1

0
0 50 100 150 200 250 300 350 400 450 500

Execution time (s)

Pe
rc

en
ta

ge
 o

f e
xe

cu
tio

n 
tim

e

(c)

FIGURE 4. The execution time for the major steps of lightly baked upgrades. (a) update_custom_cookbooks. (b) execute_recipes—uninstall 
Tomcat 6. (c) execute_recipes—install Tomcat 7. All three steps clearly showed a long tail.
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acknowledged it for execution 
(labeled A in Figure 5). In our 
observations, this delay was 
large (from 10 to 300 seconds).

• A small delay from when AWS 
reported to have acknowledged 
the command and Chef actually 
started running on the instance 
(we got this information from 
the Chef log). This delay is 
labeled B in Figure 5. It might 
have been caused by API calls or 
a delay in the OpsWorks agent 
triggering Chef on the instance. 
It was a few seconds at most.

• A small delay from when the 
Chef run completed on the in-
stance until AWS reported that 
the command completed (labeled 
C in Figure 5). The delay time 
and reasons were similar to the 
previous small delay.

Figure 6 shows the time distribu-
tion for all three delays.

The second contributor to the 
delays stemmed from external re-
sources—mostly, the software re-
pository and dependency servers—
which made up approximately 70 
percent of the overall long-tail distri-
bution. Downloading software from 
an external repository for installa-
tion or even resolving dependencies 
before removing an old version can 
have considerable long-tail char-
acteristics. The remaining actions, 
such as configuring and updating 
cookbooks from local cache, show 
no such characteristics. Common 
industry practices use a local mirror 
server or some redundancy to relieve 
the issues around downloading from 
repositories.

One possibility is that the de-
lays were due to Chef’s somewhat 
unpredictable pull model, in which 
the configuration converges peri-
odically toward the desired state. 

However, for OpsWorks and our 
rolling upgrade, this was trans-
formed more into a push model: 
different types of Chef recipes were 
set to converge when triggered by 
specific conditions. For example, 
Chef recipes in OpsWorks’ “config-
ure” life-cycle event ran on all in-
stances every time an instance in 
the OpsWorks stack entered or left 
the online state (for example, to 
start, stop, or terminate). So, Chef’s 
pull model wasn’t a major factor in 
this setup.

Discussion and  
Threats to Validity
This study has some obvious limi-
tations. First, it built on AWS using 
OpsWorks and Chef, without testing 
other platforms.

Second, our comparison is lim-
ited: we didn’t consider image prep-
aration time, which might differ 
considerably between the heavily 
and lightly baked approaches. In the 
past, images were often prepared by 
starting an instance, installing the 
required software, and resealing it as 
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FIGURE 5. The three types of delays during each command’s execution. Label A 
indicates the delay from when the command was created until AWS acknowledged it for 
execution. B indicates the delay from when AWS reported to have acknowledged the 
command and Chef actually started running on the instance. C indicates the delay from 
when the Chef run completed on the instance until AWS reported that the command 
completed.

FIGURE 6. The total delay in command processing and reporting. This takes into 
account the three delays in Figure 5.
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an image before provisioning. In that 
process, time and reliability were 
major concerns.

However, the improved current 
practice is to use a dedicated baking 
instance3 that modifies a mounted 
image directly, considerably speed-
ing up preparation. The process is 
also more reliable because the im-
age is never started with on-demand 
configuration to get the required 
software. We believe the time and re-
liability issues are largely resolved in 
practice.

Third, 72 servers isn’t a huge 
setup. We believe the outliers in the 
tail are proportional to the total 
number of servers upgraded in larger 
settings. But the outliers’ effect on 
the total upgrade completion time 
might also depend on a rolling up-
grade’s granularity.

Only a few related approaches ex-
ist in this area. When a release pro-
cess is automated through scripts, 
error-handling mechanisms in the 

scripting or high-level languages 
can detect and react to errors and 
reliability issues through exception 
handling. For example, error han-
dlers in Netflix’s Asgard (https://
github.com/Netflix/asgard) and 
Chef (www.getchef.com/chef) react 
to detected errors. These exception-
handing mechanisms are best suited 
for single-language environments, 
but continuous delivery often must 
deal with different types of error re-
sponses from different systems. Also, 
exception handling has only local 

information rather than global vis-
ibility when an exception is caught. 
So, external validation checks based 
on more global information are 
useful.

Our Proposed Solution
We now introduce some early solu-
tions to the problems we’ve identi-
fied; our primary goal is to shorten 
the long tail in some operations.

To deal with the reliability is-
sues, we incorporate fail fast, retry, 
and alternative actions in the rolling-
upgrade tools. In our rolling upgrade 
using AWS OpsWorks, we imple-
mented the following four error de-
tection and handling mechanisms, 
which considerably reduced the reli-
ability issues.

First, our system actively tracks 
each instance’s status through the 
life cycle and the time spent in each 
life-cycle stage. The information is 
then used by approaches that we de-
scribe later.

Second, we implement asynchro-
nous upgrades. For a rolling-upgrade 
granularity of k (k > 1), we don’t wait 
until each wave is finished before 
starting the next wave. When a sin-
gle instance has been upgraded and 
is online again, another instance is 
upgraded straightaway. The granu-
larity then ensures that k servers are 
upgraded concurrently at any point 
in time. This also prevents recurring 
errors in an instance from blocking 
the whole upgrade. Should the prob-
lem recur on all subsequently started 

instances, the whole upgrade will 
fail-stop or be rolled back.

Third, we use time-outs specific 
to each status to fail fast. We col-
lected historical data for upgrades 
and use the 95th percentile as the de-
fault (but configurable) time-out.

Finally, we provide stop–restart, 
replace, deploy without restart, and 
direct triggering of life-cycle events 
as alternatives for many actions.

In addition, OpsWorks heavily 
builds on Chef and, as we’ve seen, 
contributes considerably to unreli-
ability. So, we implemented mini-
test-based validation (https://github.
com/calavera/minitest-chef-handler) 
of intermediary outcomes for the 
Chef portion. Previously, these tests 
were used during development; we’re 
using them during production runs 
to detect errors early. These tests go 
beyond what Chef error reports or 
logs are reporting. They validate the 
expected final outcomes—not just 
inputs to a Chef execution or the ex-
ecution itself.

Finally, for EC2 API reliability is-
sues, we analyzed their characteris-
tics and implemented an API wrap-
per to solve the problem.4

A s our investigation clearly 
shows, the reliability prob-
lems of deployment infra-

structure and tools—excluding script 
and user errors—are considerable 
under the lightly baked approach 
and exhibit long-tail characteristics 
at scale. Key contributing factors 
here include infrastructure API re-
liability, command processing and 
reporting delays, and dealing with 
external resources. The mechanisms 
we described in this article are good 
strategies to alleviate these prob-
lems. Furthermore, we’re developing 
Process-Oriented Dependability, a 

The reliability problems of deployment 
infrastructure and tools are considerable 

under the lightly baked approach.
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framework that works with existing 
deployment tools by analyzing the 
logs they produce.5

The heavily baked approach can 
incur considerable preparation over-
head because even minor changes 
warranting a release require prepar-
ing a complex image. The numerous 
images that result must be stored and 
managed, creating “image sprawl.” 
Also, an application might comprise 
many different images that must cor-
respond to each other in some way. 
This monolithic approach often re-
quires considerable coordination, 
thus delaying deployment.
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