
Detecting Cloud Provisioning Errors Using an Annotated
Process Model

Xiwei Xu1, Ingo Weber1,2, Len Bass1,2, Liming Zhu1,2, Hiroshi Wada1,2, Fei Teng1
1NICTA, Sydney, Australia

2School of Computer Science and Engineering, University of New South Wales, Sydney, Australia

{firstname.lastname}@nicta.com.au

ABSTRACT
In this paper, we demonstrate the feasibility of annotating a process
model with assertions to detect errors in cloud provisioning in near
real time. Our proposed workflow is: a) construct a process model
of the desired provisioning activities using log data, b) use the
process model to determine appropriate annotation triggers and
annotate the process model with assertions, c) use the process model
to monitor the deployment logs as they are generated, d) trigger the
assertion checking based on process activities and log entries, and e)
check the assertions to determine errors.

For a production deployment tool, Asgard, we have implemented
the steps involving constructing a process model, using the model to
determine appropriate annotation triggers, triggering the annotation
checking based on Asgard log files, and detecting errors. Our
prototype has detected errors that cross deployment tool boundaries
and go undetected by Asgard; it further has detected other errors
substantially more quickly than Asgard would have.

Categories and Subject Descriptors
D.2.4 [Software Program Verification] reliability

General Terms
Reliability

Keywords
System administration, deployment, cloud provisioning, error
detection

1. INTRODUCTION
Deploying applications in cloud environments introduces
uncertainties for operations that have traditionally been under the
direct control of an enterprise. Enterprises become dependent on the
cloud infrastructure to provision resources. The uncertainty arises
from the inherent randomness in the behavior of cloud
environments, caused by day-to-day node and instance failures, rare
large-scale disasters, workload spikes, and the like. In addition to
the uncertain cloud environment, configuration errors cause a
significant fraction of system failure. Some configuration errors are
subtle and take a long time to detect and diagnose, thus leading to
long recovery time [1]. Indeed, Matt Welsh has called the problem
“configuration hell” 1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MW4NG’13 December 9–13, 2013, Beijing, China.
ISBN: 978-1-4503-2551-6
Copyright 2010 ACM 1-58113-000-0/00/0010 …$15.00.

Detecting errors occurring during the provisioning (configuring and
deploying) of cloud applications is a difficult process. Some of the
reasons why provisioning is error prone are that multiple
independent systems are involved and configuration specifications
must be consistent, log files are voluminous and inconsistent in
style, and particular sequencing of events must be enforced.

We propose using a process model annotated with assertions to
detect provisioning and configuration errors in near real time. The
process model provides specification of the order and parallelism
possibilities of the events of the provisioning, the annotations
provide specific assertions that can be checked when the
provisioning process has reached particular steps, and the assertions
are checked by examining the actual state of the deployment, not by
inferring the state.

Figure 1 shows our proposed workflow for accomplishing this error
detection. Figures 1a and 1b represent what happens offline prior to
the actual provisioning and Figure 1c represents the online
evaluation.

Figure 1a shows the creation of the process model. This is
accomplished by using logs created by successful provisioning. This
process is semi-automatic in that the steps of the process model
must be given meaningful names and must be at the correct
granularity.

Provisioning	
systems	 to	

be	
monitored

Operator

Log	 dataLog	 data
Training	
Data

Make	
adjustments	 in	

log	 data	
processing

Create	 Process	
Model

Figure 1a. Creating the process model.
(Refer to figure 4 for the detailed process model.)

Figure 1b shows the annotations being added to the process model
and the associated triggers and assertions being developed. This
activity is guided by the steps of the process model and their
granularity. Locations for annotations are, typically, the beginning
or the end of a process step. It is also possible to have annotations
during a process step; however, annotations that are placed during a
process step cause consideration of the granularity of the particular
process step.

1 http://matt-welsh.blogspot.com.au/2013/05/what-i-wish-systems-

researchers-would.html

Operator

Assertion	
triggers	 and	
evaluators

Create	 triggers	 and	
evaluators

Process	 Model

Figure 1b. Creating the assertions and their evaluators.
(Refer to Figure 4 for the detailed process model.)

Figure 1c shows the monitoring of the log files while the
provisioning is underway. The logs produced by the provisioning
systems are placed in a central repository and this repository is used
to trigger the various assertion evaluators.

Provisioning	
systems	 in	
action

Logs

Assertion	
triggers	 and	
evaluators

Monitor	 log	
data

Identify	 errors

Log	
repository

Figure 1c. Online use of assertion triggers and evaluators.

Note that the offline portion of this workflow needs to be executed
just once for each combination of provisioning tools. Subsequently
each use of those provisioning tools will execute the same process
and, consequently, can be tested by the same set of triggers and
evaluators.

Theoretically speaking, we take a holistic view of the provisioning
process as involving multiple tools, events, and states that can be
captured in a process model and tested by assertions. This view is
new and is the contribution of this paper. Our approach can detect
errors at run time, which is difficult due to the uncertain cloud
infrastructure. Even with a “perfect” static specification, runtime
failures can occur and these need to be detected (and recovered, if
possible). In addition, our approach can detect errors that cut across
systems, rather than errors specific to a single system.

To generalize our approach, we are investigating its application in
other contexts. In terms of cloud environments, we are looking at
VMware2. In terms of automated operation, we are looking at
Chef3/Puppet4. In terms of our methodology, we are working on
decoupling the creation of the process models from logs.

Practically speaking, we also report on the implementation of some
of the steps of this workflow for the product deployment tool
Asgard5. We report on the creation of the process model and the
structure and use of the assertion triggers and evaluators. We
created the triggers based on the errors we encountered while
creating the training data for the process model creation. Our
prototype implementation discovers some errors that Asgard does
not detect and some errors much more quickly than Asgard would

2 http://www.vmware.com
3 http://www.opscode.com/chef
4 http://puppetlab.com
5 https://github.com/Netflix/asgard

detect them. We begin by discussing related work, followed by the
creation of the process model, the structure of the triggers and
evaluators, and the use of our prototype.

2. RELATED WORK
Provisioning processes are often implemented in specific
deployment tools (e.g., the Asgard tool used in this paper) or
customized scripts (shell-based or using Chef/Puppet-like generic
tools). Test-driven sys-admin frameworks, such as Chef-
Cucumber 6 , allow intermediary assertions to be written and
integrated with the provisioning scripts. These approaches require
instrumentation, synchronously waiting for the assertion evaluation
– thus slowing down the provisioning process while not being
integrated with external monitoring tools. Other approaches, such as
WiDS [2], interpose and check the expected internal states during
runtime. They focus on the state of the system rather than the
processes and events leading to the state. The approach in [3] uses
discrete event simulation to simulate the operation process and
analyze the tradeoffs between different strategies resources to error
detection and repair. FATE [4] allows the specification of events,
can derive facts from events and compare facts with expectations.
These approaches are used for internal protocols in distributed
software and require in-depth understanding of the internals as well
as instrumentation. Our approach uses logs to understand the
processes and asynchronously evaluate the intermediary assertions
in non-intrusive ways. This is particularly true for deployment tools
that cannot be instrumented and where the logs are the only
accessible artifacts during deployment.

Our process discovery technique from log files builds on the
techniques from process mining – see the book by van der Aalst [5]
for an overview. Process mining has been used to find errors in
business processes [5] as well as to predict errors in hardware [6].
None of the uses of process mining has been to provide a
description that can be annotated with assertions.

3. PROCESS MODEL CREATION

No

Done

Yes

Transformation	
rules

Asgard

Operator

Log	 dataLog	 data

Transform Discover	
model

Clustering

Clustering	
and	 naming	
proposal

Clustering	
and	 naming	
proposal

Derive

Acceptable?

Current	
Model

Figure 2. Creating the process model

(Refer to Figure 4 for the detailed process model.)

The process model was created following the procedure in Figure 2.
The log data reflects two successful executions of Asgard that

6 http://www.cucumber-chef.org/

performed a rolling upgrade of a configuration with 4 instances. The
first execution upgraded one instance at a time and produced a log
file with 121 lines. The second execution upgraded two instances at
a time and produced a log file with 253 lines.

The log files for the runs are then compared pairwise to create an
NxN matrix. In our case, this was 374x374. Each cell of the matrix
contains a value based on the Levenshtein distance [7] of the two
lines in the log file used to index that cell. The Levenshtein distance
measures the editing distance between two lines. We normalized
this measure based on the length of the longer line.

For example, if we consider three log lines:

1. [2013-07-18 15:37:31,369] [Task:Pushing ami-ad059597 into group
sdmcmm_appone--firstASG for app sdmcmm_appone]
com.netflix.asgard.Task 2013-07-18_15:37:31 135: {Ticket: null}
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Started on thread Task:Pushing
ami-ad059597 into group sdmcmm_appone--firstASG for app
sdmcmm_appone.	

2. [2013-07-18 15:37:31,996] [Task:Pushing ami-ad059597 into group
sdmcmm_appone--firstASG for app sdmcmm_appone]
com.netflix.asgard.Task 2013-07-18_15:37:31 135: {Ticket: null}
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Updating launch from
sdmcmm_appone --firstASG-20130718120001 with ami-ad059597
into sdmcmm_appone --firstASG-20130718153731	

3. [2013-07-18 15:37:31,998] [Task:Pushing ami-ad059597 into group
sdmcmm_appone --firstASG for app sdmcmm_appone]
com.netflix.asgard.Task 2013-07-18_15:37:31 135: {Ticket: null}
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Create Launch Configuration
sdmcmm_appone--firstASG-20130718153731' with image 'ami-
ad059597'	

We get the following symmetric matrix.

Table 1. Symmetric distance matrix.

0. .711 .775
 0. .593
 0.

The resultant NxN matrix is then clustered by a dendrogram
creation tool, MultiDendrograms7, using the “unweighted average”
algorithm. This algorithm belongs to the family of Hierarchical
Agglomerative Clustering (HAC) algorithms. A dendrogram yields
a hierarchical arrangement of the source data where each node has a
distance from its parent and children. Visualizing the hierarchy
based on the distances provides a representation that shows groups
of data items. The operator chooses a threshold for the clusters (a
value that divides the data into coherent groups) and assigns each
cluster a meaningful name.

Figure 3 shows the dendrogram derived from the log lines of our
two executions of Asgard. The thick blue horizontal line is the line
drawn by the operator to define meaningful clusters.

What we have done, thus far, is to use a similarity measure – the
Levenshtein distance – and cluster similar log entries based on this
measure. The last step in the clustering activity is to generate
regular expressions. Each entry in the dendrogram represents a
string taken from the log file. Each cluster is therefore a group of
strings. A regular expression can be constructed such that it, more

7 http://deim.urv.cat/~sgomez/multidendrograms.php

or less, represents the group of strings in a cluster. We used minimal
acyclic DFAs [8] to construct these regular expressions.

The regular expressions we created are quite specific for these log
lines. In the future, we expect to generalize the procedure for
creating the regular expressions. The regular expression following
this paragraph matches log line 2 above. Note that the tool replaces
concrete numbers with “\d+” and concrete AMIs etc. with “ami-[0-
9a-f]{8}", the latter portion meaning eight hex values. This is a
domain specific encoding for AWS. The first 333 characters are
replaced with ".{333}"since the first 333 characters are the same for
all line entries in the log of one run, except for timestamps.

.{333} <whitespace> Updating <whitespace> launch <whitespace> from
<whitespace> sdmcmm_appone--firstASG-\d+ <whitespace> with
<whitespace> ami-[0-9a-f]{8} <whitespace> into <whitespace>
sdmcmm_appone --firstASG-\d+

Figure 3. Dendrogram produced by MultiDendograms.

The named activity and the related set of log items are used as input
into a process discovery tool, Disco8 [5, Chap 5]. The output of the
tool is the process model used to define the triggering activities
during additional executions of Asgard.

The process model that was generated from our training set is
shown in Figure 4. The names of the nodes are the names assigned
by the operator and the labels on the lines are the time taken to
make the transformation.

It is worth noting that prior to using a process-mining tool, we
developed a process model manually by investigating the source
code of Asgard. Our manual model was incorrect in several
particulars, which we discovered from Figure 4 and verified by
examining the particular log entries manually. The ground truth for
a process model in our approach comes from execution, not from
inspection.

4. CREATION OF ASSERTIONS AND
EVALUATORS
According to the process model mined from Asgard logs, we
manually created a set of assertions for each of the critical steps. We
determined the critical steps based on our experience. Not every
step is critical from a cloud provisioning perspective. For example,
the third step in the process model of sorting instances, which sorts
the instances in the ASG by their launch times, was not seen as

8 http://www.fluxicon.com/disco/

critical. The mapping between the operation steps and the
corresponding assertions is shown in table 2.

Figure 4. Output from Disco giving the process model.

Table 2. Assertions of Asgard process.

Steps Assertions
Update launch configuration 1. ASG uses new launch

configuration
Remove and deregister old
instance (i) from ELB

2. i has been deregistered
from ELB
3.i has been removed from
ASG

Terminate old instance (i) 4. i is successfully terminated
Wait for ASG to launch new
instance (i’)

5. i’ is successfully launched

New instance (i’) ready and
registered with ELB

6. i’ has been registered to
ELB
7. i’ has been added to ASG

Each assertion is implemented by an evaluator, which could utilize
Amazon Web Services (AWS) API (mainly describing different
resources) directly or other third-party monitor frameworks to
gather information to evaluate whether the assertion is true, as
shown in Figure 5. We used Edda9, an open-source solution to track
infrastructure resources within AWS. Edda has better query ability

9 https://github.com/Netflix/edda

than the AWS API and also supports querying the history of
infrastructure resources. The evaluators are implemented as a set of
RESTful Web Services based on Restlet 10 – a java RESTful
framework.

5. STRUCTURE OF TRIGGERS AND
EVALUATORS
Figure 1c shows the core idea of our assertion approach. We collect
the logs from Asgard into a repository, which we monitor. Certain
log lines trigger respective evaluators.

Specifically, we collect the Asgard logs using Logstash11. Logstash
is an open source tool to collect, parse, index, and store logs. A
Logstash agent periodically filters the noise elements of the log and
looks for triggering conditions. Recall that the triggering conditions
correspond to some location within the process model. When a
triggering condition is found, the associated evaluator is invoked.
The evaluator places information back into the Logstash repository
where another Logstash agent examines it and sends information to
a visualization component.

Figure 5 shows the various elements associated with this structure.
There are three nodes in our environment, an operation node, an
assertion evaluation node and a visualization node.
Asgard is deployed on the operation node within the cloud to
manipulate infrastructure resources through the AWS API. The
assertion evaluation node hosts a set of RESTful evaluation Web
services to check assertions.
We deployed Logstash agents on the two nodes to collect the logs
produced by Asgard and assertion evaluation services respectively
and ship the logs to the database deployed on the visualization node.
The Logstash agent on the operation node also pre-processes
Asgard logs before shipping, including 1) filtering out noise, 2)
aligning the log with the created process model through annotating
log lines with process context as tags, 3) grouping log event with
multiple log lines into a single entry, such as exception and errors,
for better visualization, and 4) triggering assertion evaluation after
each critical step.
The code snippet below gives two simplified sample records from
Logstash. The first one is drawn from the original Asgard log. The
original log content is shown in @message element, which says an
instance is deregistered from an ELB (Elastic Load Balancer).
Logstash uses regular expressions12 to match the process relevant
log lines, and annotate the matched log line with the label “asgard”,
as shown in @type element. The corresponding evaluator produces
the second record, which has the label of “postcon” under @type
element. The log states that the instance is successfully deregistered
from the ELB. @tag element is used by Logstash for statistics and
visualization. We added the same values to the @tag element of
both records, so that the visualization node could associate the
original log line with the corresponding evaluator log lines.

{"@source":"file://postcondition.com/asgard.log","@tags":["push","sdmcm
mapp--firstASG","step2"],"@timestamp":"2013-07-28T09:15:33.427Z",
"@source_host":"operation.com","@source_path":"//asgard.log","@messag
e":"[2013-07-28 19:15:33,187] [Task:Pushing ami-17cf5d2d into group

10 http://restlet.org
11 http://logstash.net/
12 Although, in principle, we could have used the process mining
tool to detect which step individual log entries belong to, in our
case, we detected step entry and exit by other means. In our future
work, we plan to integrate the process mining and the triggering
more closely.

sdmcmmapp--firstASG for app sdmcmmapp] Deregistered instances [i-
e07969dd] from load balancer FirstELB ","@type":"asgard"}

{"@source":"file://postcondition.com/postcondition.log","@tags":["push","s
dmcmmapp--firstASG","step2"],"@timestamp":"2013-07-28 T09:15:51.
284Z","@source_host":"postcondition.com","@source_path":"//postcon
dition.log","@message":"[2013-07-28 19:15:50, 482] [postcondition]
[Task:Pushing ami-17cf5d2d into group sdmcmmapp--firstASG for app
sdmcmmapp] [Step:pushstep2] Instance i-e07969dd has been successfully
deregistered from ELB FirstELB","@type":"postcon"}

6. PRELIMINARY EVALUATION
Our approach provides evaluator services in parallel with the
deployment operation to (re-)evaluate the assertion after every
critical operation step. The result of the evaluation is combined with
the original operation logs to produce more evaluation information.
In this section, we evaluate the proposed mechanism and additional
evaluation information produced from an error detection
perspective. We manually injected some cloud resource errors at
different severity levels during rolling upgrades of an ASG with 4
instances, and use our prototype to detect those injected errors.

Figure 5. Structure of triggers and evaluators.

6.1 Detection of Temporary Erroneous State
The assertions we used for the basic checking are shown in table 2.
Only the first assertion is evaluated once. All the other 6 assertions
are evaluated for each pair of one old node and one new node. Thus,
25 assertions were evaluated in total, printing 25 extra log lines. The
evaluation doesn’t delay the deployment process of Asgard, because
the assertions are evaluated asynchronously. Every evaluation is
nearly instantaneous, except for short delays introduced by Logstash
and Edda.

The system being deployed could be in a "temporary" erroneous
state before returning to a correct state. Some of the temporary
errors are detected and logged by Asgard, and some are not. We
could detect such errors but it might not be valuable. In our first
case, we injected two temporary errors: 1) deleting a new instance
before it is ready, and 2) deleting a new instance after it is ready.
Our evaluator detected both errors. Asgard, however, only detects
the first error and launched another instance. For the second error, a
compensation instance is launched by ASG after the rolling
upgrade.

6.2 Early Detection of Error
Some errors, which take a long time before Asgard throws an
exception, are detected by our mechanism earlier. Missing ELB

(Elastic Load Balancer) is one of the faults causing such errors.
Once an ASG is associated with an ELB, any new instance must be
registered with the ELB to become “in service,” i.e., receive traffic.
If the ELB becomes unavailable, ASG cannot successfully launch
new instances. Asgard’s configuration includes a setting for the
maximal number of retries in case of failed startup. Asgard will
print an error log and abort the rolling upgrade operation after
retrying the maximal of times.

To simulate the case of a failed ELB, we manually deleted the ELB
associated with the ASG after one instance is successfully launched
by Asgard. After around 15 minutes, Asgard printed the final error,
shown as below, which does not provide useful information about
the potential cause of the fault.

[2013-08-19 15:30:09,165] [Task:Pushing ami-17cf5d2d into group
sdmcmmapp--firstASG for app sdmcmmapp] Exception:com.netflix
.asgard.push. PushException: 1 of 4 instance relaunches done. Startup failed
6 times for one slot. Max 5 tries allowed. Aborting push.

Figure 6. Allocation of ELB existence assertions.

To detect such errors, we added an assertion after every critical step
to check if the ELB was still alive. As shown in Figure 6, 13 extra
evaluation log lines are added in total. When the ELB is deleted
after the first node is successfully launched, the evaluator associated
with the assertion at the next step of the fault step (remove and
deregister second instance from ELB) detected the missing ELB and
printed a log line as below. “sdmcmmappELB” is the ID of the ELB
associated with the ASG. The timestamp shows that our evaluation
detected the missing ELB after approx. 2 minutes (roughly 13
minutes earlier than Asgard with the above configuration). The time
difference depends on the maximal retries, so Asgard could report
the error more quickly if configured accordingly.

Inject
Error

ELBAssertion

ELBAssertion

ELBAssertion

ELBAssertion

[2013-08-19 15:17:59,205] [postcondition] [Task:Pushing ami-17cf5d2d
into group sdmcmmapp--firstASG for app sdmcmmapp] [Step:pushstep2]
ELB sdmcmmappELB does not exist.

6.3 Detection of Silent Error
There are some subtle configuration errors that escape Asgard
completely, and result in an erroneous (not failed) system after the
rolling upgrade. For example, a race condition during deployment
can cause the launch configuration associated with the ASG to be
changed during a rolling upgrade. Asgard doesn’t detect such
modifications of the ASG configuration. The printed logs are
exactly the same as successful runs. However, the ASG ends up
with 4 instances using two different launch configurations, for
example, different AMIs, Kernel IDs, or security groups.

As we did for the case of a missing ELB, we added an assertion
after every critical step to check the launch configuration used by
the ASG. Thus, we added another 13 extra evaluation log lines into
the original Asgard log. The following two log lines are produced
by the evaluator: one line shows the configuration passing the check
and the other shows it failing.
[2013-08-19 13:32:22,909] [postcondition] [Task:pushing sdmcmmapp----
firstASG] [Step:pushstep3] sdmcmmapp--firstASG is using launch
configuration sdmcmmapp --firstASG-20130819133202

[2013-08-19 13:38:09,425] [postcondition] [Task:pushingsdmcmmapp----
firstASG] [Step:pushstep4] icse--firstASG is using launch configuration
sdmcmmapp--firstASG-20130819124209 rather than sdmcmmapp--
firstASG-20130819133202

6.4 Limitations of Using Logs as Triggers
Using only logs to trigger the evaluator has some limitations.

• For some operation steps duplicate log lines are produced by
Asgard. For example, two almost identical logs lines are
produced before a function is invoked and within the function
respectively without indicating the context. In this case, the
regular expression we use to match the log line must be very
specific to distinguish the two different but very similar log
lines to avoid triggering an evaluation twice.

• Some operation steps, especially the ones done by a third-party
(like Amazon) do not produce any entries in the Asgard log.
Thus, the operation steps provided by third-party services are
invisible, unless Asgard has some built-in monitoring and
logging mechanism to check what the third-party service does.

7. DISCUSSION AND FUTURE WORK
We have demonstrated that using an annotated process model to
guide error detection is a feasible approach to detecting errors that
occur during provisioning. Our prototype both detected errors faster
than they would otherwise have been discovered and also detected
errors that would not have been discovered until execution of the
system being deployed.

We did this under favorable assumptions, however. The logs
produced by Asgard are of high quality and come from a single
source. We also implemented several steps of our proposed
workflow manually. Our future work includes removing these
favorable assumptions. We plan to:

1. Automate more steps. We hand crafted many of the
intermediate steps in our error detection. Some of these could
be, at least partially, automated. One candidate is to more
tightly integrate the process mining and the post condition
triggering.

2. Deal with other and multiple sources of logs. Asgard produces
very high quality logs. We need to be able to construct a
process model and trigger assertion evaluation when the logs
come from different sources and are of lesser quality.

3. Diagnose errors. Detecting errors early provides more
possibilities for error diagnosis and we plan to explore some of
those possibilities.

4. Generalize our current approach for different contexts. We are
investigating applying our process mining technique into
VMware environments, applying our approach into the Chef
framework, and working on decoupling the creation of the
process models from logs.

8. ACKNOWLEDGMENTS
NICTA is funded by the Australian Government through
the Department of Communications and the Australian Research
Council through the ICT Centre of Excellence Program.

9. REFERENCES
1. D. Oppenheimer, A. Ganapathi, and D. Patterson. Why do

Internet services fail, and what can be done about it? The 1st
USENIX Symposium on Internet Technologies and Systems,
2003.

2. Yang, J., et al. MODIST: Transparent Model Checking of
Unmodified Distributed Systems. The 6th USENIX Symposium
on Networked Systems Design and Implementation, April
2009.

3. Xu, X., Zhu, L, Bass, L. Lu, Q., Fu, M. Modeling and
analyzing operation processes for dependability. Abstract,
IEEE/IFIP International Conference on Dependable Systems
(DSN), Budapest, Hungary, June 2013.

4. Gunawi, H.S. et al., FATE and DESTINI: a framework for
cloud recovery testing," in proceedings 8th USENIX
Symposium on Networked Systems Design and
Implementation, March 2011.

5. Van der Aalst, W.M.P, Process Mining: Discovery,
Conformance and Enhancement of Business Processes,
Springer Verlag, 2011.

6. Lu, F., Fault Diagnosis Using Process Mining, MS Thesis,
Eindhoven University of Technology,
alexandria.tue.nl/extra1/afstversl/wsk-i/fliu2011.pdf

7. Wikipedia, Levenshtein distance http://en.wikipedia.org/wiki/
Levenshtein_distance

8. Watson, B. W, A new algorithm for the construction of
minimal acyclic DFS, Science of Computer Programming, Vol
48, Iss2-3, Aug, 2003.

Possible to Equal Length

