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ABSTRACT 
In this paper, we demonstrate the feasibility of annotating a process 
model with assertions to detect errors in cloud provisioning in near 
real time. Our proposed workflow is: a) construct a process model 
of the desired provisioning activities using log data, b) use the 
process model to determine appropriate annotation triggers and 
annotate the process model with assertions, c) use the process model 
to monitor the deployment logs as they are generated, d) trigger the 
assertion checking based on process activities and log entries, and e) 
check the assertions to determine errors.  

For a production deployment tool, Asgard, we have implemented 
the steps involving constructing a process model, using the model to 
determine appropriate annotation triggers, triggering the annotation 
checking based on Asgard log files, and detecting errors. Our 
prototype has detected errors that cross deployment tool boundaries 
and go undetected by Asgard; it further has detected other errors 
substantially more quickly than Asgard would have. 

Categories and Subject Descriptors 
D.2.4 [Software Program Verification] reliability 
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Reliability 

Keywords 
System administration, deployment, cloud provisioning, error 
detection 

1. INTRODUCTION 
Deploying applications in cloud environments introduces 
uncertainties for operations that have traditionally been under the 
direct control of an enterprise. Enterprises become dependent on the 
cloud infrastructure to provision resources. The uncertainty arises 
from the inherent randomness in the behavior of cloud 
environments, caused by day-to-day node and instance failures, rare 
large-scale disasters, workload spikes, and the like. In addition to 
the uncertain cloud environment, configuration errors cause a 
significant fraction of system failure. Some configuration errors are 
subtle and take a long time to detect and diagnose, thus leading to 
long recovery time [1].  Indeed, Matt Welsh has called the problem 
“configuration hell” 1. 
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Detecting errors occurring during the provisioning (configuring and 
deploying) of cloud applications is a difficult process. Some of the 
reasons why provisioning is error prone are that multiple 
independent systems are involved and configuration specifications 
must be consistent, log files are voluminous and inconsistent in 
style, and particular sequencing of events must be enforced. 

We propose using a process model annotated with assertions to 
detect provisioning and configuration errors in near real time. The 
process model provides specification of the order and parallelism 
possibilities of the events of the provisioning, the annotations 
provide specific assertions that can be checked when the 
provisioning process has reached particular steps, and the assertions 
are checked by examining the actual state of the deployment, not by 
inferring the state. 

Figure 1 shows our proposed workflow for accomplishing this error 
detection. Figures 1a and 1b represent what happens offline prior to 
the actual provisioning and Figure 1c represents the online 
evaluation. 

Figure 1a shows the creation of the process model. This is 
accomplished by using logs created by successful provisioning. This 
process is semi-automatic in that the steps of the process model 
must be given meaningful names and must be at the correct 
granularity. 
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Figure 1a. Creating the process model. 
(Refer to figure 4 for the detailed process model.) 

Figure 1b shows the annotations being added to the process model 
and the associated triggers and assertions being developed. This 
activity is guided by the steps of the process model and their 
granularity. Locations for annotations are, typically, the beginning 
or the end of a process step. It is also possible to have annotations 
during a process step; however, annotations that are placed during a 
process step cause consideration of the granularity of the particular 
process step. 
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Figure 1b. Creating the assertions and their evaluators.  
(Refer to Figure 4 for the detailed process model.) 

Figure 1c shows the monitoring of the log files while the 
provisioning is underway. The logs produced by the provisioning 
systems are placed in a central repository and this repository is used 
to trigger the various assertion evaluators. 
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Figure 1c. Online use of assertion triggers and evaluators. 

Note that the offline portion of this workflow needs to be executed 
just once for each combination of provisioning tools. Subsequently 
each use of those provisioning tools will execute the same process 
and, consequently, can be tested by the same set of triggers and 
evaluators. 

Theoretically speaking, we take a holistic view of the provisioning 
process as involving multiple tools, events, and states that can be 
captured in a process model and tested by assertions. This view is 
new and is the contribution of this paper. Our approach can detect 
errors at run time, which is difficult due to the uncertain cloud 
infrastructure. Even with a “perfect” static specification, runtime 
failures can occur and these need to be detected (and recovered, if 
possible). In addition, our approach can detect errors that cut across 
systems, rather than errors specific to a single system.  

To generalize our approach, we are investigating its application in 
other contexts. In terms of cloud environments, we are looking at 
VMware2. In terms of automated operation, we are looking at 
Chef3/Puppet4. In terms of our methodology, we are working on 
decoupling the creation of the process models from logs.  

Practically speaking, we also report on the implementation of some 
of the steps of this workflow for the product deployment tool 
Asgard5. We report on the creation of the process model and the 
structure and use of the assertion triggers and evaluators. We 
created the triggers based on the errors we encountered while 
creating the training data for the process model creation. Our 
prototype implementation discovers some errors that Asgard does 
not detect and some errors much more quickly than Asgard would 
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detect them. We begin by discussing related work, followed by the 
creation of the process model, the structure of the triggers and 
evaluators, and the use of our prototype. 

2. RELATED WORK 
Provisioning processes are often implemented in specific 
deployment tools (e.g., the Asgard tool used in this paper) or 
customized scripts (shell-based or using Chef/Puppet-like generic 
tools). Test-driven sys-admin frameworks, such as Chef-
Cucumber 6 , allow intermediary assertions to be written and 
integrated with the provisioning scripts. These approaches require 
instrumentation, synchronously waiting for the assertion evaluation 
– thus slowing down the provisioning process while not being 
integrated with external monitoring tools. Other approaches, such as 
WiDS [2], interpose and check the expected internal states during 
runtime. They focus on the state of the system rather than the 
processes and events leading to the state. The approach in [3] uses 
discrete event simulation to simulate the operation process and 
analyze the tradeoffs between different strategies resources to error 
detection and repair. FATE [4] allows the specification of events, 
can derive facts from events and compare facts with expectations. 
These approaches are used for internal protocols in distributed 
software and require in-depth understanding of the internals as well 
as instrumentation. Our approach uses logs to understand the 
processes and asynchronously evaluate the intermediary assertions 
in non-intrusive ways. This is particularly true for deployment tools 
that cannot be instrumented and where the logs are the only 
accessible artifacts during deployment. 

Our process discovery technique from log files builds on the 
techniques from process mining – see the book by van der Aalst [5] 
for an overview. Process mining has been used to find errors in 
business processes [5] as well as to predict errors in hardware [6]. 
None of the uses of process mining has been to provide a 
description that can be annotated with assertions. 
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Figure 2. Creating the process model  

(Refer to Figure 4 for the detailed process model.) 

The process model was created following the procedure in Figure 2. 
The log data reflects two successful executions of Asgard that 
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performed a rolling upgrade of a configuration with 4 instances. The 
first execution upgraded one instance at a time and produced a log 
file with 121 lines. The second execution upgraded two instances at 
a time and produced a log file with 253 lines. 

The log files for the runs are then compared pairwise to create an 
NxN matrix. In our case, this was 374x374. Each cell of the matrix 
contains a value based on the Levenshtein distance [7] of the two 
lines in the log file used to index that cell. The Levenshtein distance 
measures the editing distance between two lines. We normalized 
this measure based on the length of the longer line. 

For example, if we consider three log lines: 

1. [2013-07-18 15:37:31,369] [Task:Pushing ami-ad059597 into group 
sdmcmm_appone--firstASG for app sdmcmm_appone] 
com.netflix.asgard.Task    2013-07-18_15:37:31 135: {Ticket: null} 
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Started on thread Task:Pushing 
ami-ad059597 into group sdmcmm_appone--firstASG for app 
sdmcmm_appone.	  

2. [2013-07-18 15:37:31,996] [Task:Pushing ami-ad059597 into group 
sdmcmm_appone--firstASG for app sdmcmm_appone] 
com.netflix.asgard.Task    2013-07-18_15:37:31 135: {Ticket: null} 
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Updating launch from 
sdmcmm_appone --firstASG-20130718120001 with ami-ad059597 
into sdmcmm_appone --firstASG-20130718153731	  

3. [2013-07-18 15:37:31,998] [Task:Pushing ami-ad059597 into group 
sdmcmm_appone --firstASG for app sdmcmm_appone] 
com.netflix.asgard.Task    2013-07-18_15:37:31 135: {Ticket: null} 
{User: null} {Client: localhost 0:0:0:0:0:0:0:1%0} {Region: ap-
southeast-2} [Pushing ami-ad059597 into group sdmcmm_appone--
firstASG for app sdmcmm_appone] Create Launch Configuration 
sdmcmm_appone--firstASG-20130718153731' with image 'ami-
ad059597'	  

We get the following symmetric matrix. 

Table 1. Symmetric distance matrix. 

0. .711 .775 
 0. .593 
  0. 

The resultant NxN matrix is then clustered by a dendrogram 
creation tool, MultiDendrograms7, using the “unweighted average” 
algorithm. This algorithm belongs to the family of Hierarchical 
Agglomerative Clustering (HAC) algorithms. A dendrogram yields 
a hierarchical arrangement of the source data where each node has a 
distance from its parent and children. Visualizing the hierarchy 
based on the distances provides a representation that shows groups 
of data items. The operator chooses a threshold for the clusters (a 
value that divides the data into coherent groups) and assigns each 
cluster a meaningful name. 

Figure 3 shows the dendrogram derived from the log lines of our 
two executions of Asgard. The thick blue horizontal line is the line 
drawn by the operator to define meaningful clusters.  

What we have done, thus far, is to use a similarity measure – the 
Levenshtein distance – and cluster similar log entries based on this 
measure. The last step in the clustering activity is to generate 
regular expressions. Each entry in the dendrogram represents a 
string taken from the log file. Each cluster is therefore a group of 
strings. A regular expression can be constructed such that it, more 
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or less, represents the group of strings in a cluster. We used minimal 
acyclic DFAs [8] to construct these regular expressions. 

The regular expressions we created are quite specific for these log 
lines. In the future, we expect to generalize the procedure for 
creating the regular expressions. The regular expression following 
this paragraph matches log line 2 above. Note that the tool replaces 
concrete numbers with “\d+” and concrete AMIs etc. with “ami-[0-
9a-f]{8}", the latter portion meaning eight hex values. This is a 
domain specific encoding for AWS. The first 333 characters are 
replaced with ".{333}"since the first 333 characters are the same for 
all line entries in the log of one run, except for timestamps. 

.{333} <whitespace> Updating <whitespace> launch <whitespace> from 
<whitespace> sdmcmm_appone--firstASG-\d+ <whitespace> with 
<whitespace> ami-[0-9a-f]{8} <whitespace> into <whitespace> 
sdmcmm_appone --firstASG-\d+ 

 
Figure 3. Dendrogram produced by MultiDendograms. 

The named activity and the related set of log items are used as input 
into a process discovery tool, Disco8 [5, Chap 5]. The output of the 
tool is the process model used to define the triggering activities 
during additional executions of Asgard. 

The process model that was generated from our training set is 
shown in Figure 4. The names of the nodes are the names assigned 
by the operator and the labels on the lines are the time taken to 
make the transformation.  

It is worth noting that prior to using a process-mining tool, we 
developed a process model manually by investigating the source 
code of Asgard. Our manual model was incorrect in several 
particulars, which we discovered from Figure 4 and verified by 
examining the particular log entries manually. The ground truth for 
a process model in our approach comes from execution, not from 
inspection. 

4. CREATION OF ASSERTIONS AND 
EVALUATORS 
According to the process model mined from Asgard logs, we 
manually created a set of assertions for each of the critical steps. We 
determined the critical steps based on our experience. Not every 
step is critical from a cloud provisioning perspective. For example, 
the third step in the process model of sorting instances, which sorts 
the instances in the ASG by their launch times, was not seen as 
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critical. The mapping between the operation steps and the 
corresponding assertions is shown in table 2.  

 
Figure 4. Output from Disco giving the process model. 

Table 2. Assertions of Asgard process. 

Steps Assertions 
Update launch configuration 1. ASG uses new launch 

configuration 
Remove and deregister old 
instance (i) from ELB 

2. i has been deregistered 
from ELB 
3.i has been removed from 
ASG 

Terminate old instance (i) 4. i is successfully terminated 
Wait for ASG to launch new 
instance (i’) 

5. i’ is successfully launched 

New instance (i’) ready and 
registered with ELB 

6. i’ has been registered to 
ELB 
7. i’ has been added to ASG 

Each assertion is implemented by an evaluator, which could utilize 
Amazon Web Services (AWS) API (mainly describing different 
resources) directly or other third-party monitor frameworks to 
gather information to evaluate whether the assertion is true, as 
shown in Figure 5. We used Edda9, an open-source solution to track 
infrastructure resources within AWS. Edda has better query ability 
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than the AWS API and also supports querying the history of 
infrastructure resources. The evaluators are implemented as a set of 
RESTful Web Services based on Restlet 10 – a java RESTful 
framework.    

5. STRUCTURE OF TRIGGERS AND 
EVALUATORS 
Figure 1c shows the core idea of our assertion approach. We collect 
the logs from Asgard into a repository, which we monitor. Certain 
log lines trigger respective evaluators. 

Specifically, we collect the Asgard logs using Logstash11. Logstash 
is an open source tool to collect, parse, index, and store logs. A 
Logstash agent periodically filters the noise elements of the log and 
looks for triggering conditions. Recall that the triggering conditions 
correspond to some location within the process model. When a 
triggering condition is found, the associated evaluator is invoked. 
The evaluator places information back into the Logstash repository 
where another Logstash agent examines it and sends information to 
a visualization component.  

Figure 5 shows the various elements associated with this structure. 
There are three nodes in our environment, an operation node, an 
assertion evaluation node and a visualization node.   
Asgard is deployed on the operation node within the cloud to 
manipulate infrastructure resources through the AWS API. The 
assertion evaluation node hosts a set of RESTful evaluation Web 
services to check assertions.  
We deployed Logstash agents on the two nodes to collect the logs 
produced by Asgard and assertion evaluation services respectively 
and ship the logs to the database deployed on the visualization node. 
The Logstash agent on the operation node also pre-processes 
Asgard logs before shipping, including 1) filtering out noise, 2) 
aligning the log with the created process model through annotating 
log lines with process context as tags, 3) grouping log event with 
multiple log lines into a single entry, such as exception and errors, 
for better visualization, and 4) triggering assertion evaluation after 
each critical step. 
The code snippet below gives two simplified sample records from 
Logstash. The first one is drawn from the original Asgard log. The 
original log content is shown in @message element, which says an 
instance is deregistered from an ELB (Elastic Load Balancer). 
Logstash uses regular expressions12 to match the process relevant 
log lines, and annotate the matched log line with the label “asgard”, 
as shown in @type element. The corresponding evaluator produces 
the second record, which has the label of “postcon” under @type 
element. The log states that the instance is successfully deregistered 
from the ELB. @tag element is used by Logstash for statistics and 
visualization. We added the same values to the @tag element of 
both records, so that the visualization node could associate the 
original log line with the corresponding evaluator log lines. 

{"@source":"file://postcondition.com/asgard.log","@tags":["push","sdmcm
mapp--firstASG","step2"],"@timestamp":"2013-07-28T09:15:33.427Z", 
"@source_host":"operation.com","@source_path":"//asgard.log","@messag
e":"[2013-07-28 19:15:33,187] [Task:Pushing ami-17cf5d2d into group 

                                                                    
10 http://restlet.org 
11 http://logstash.net/ 
12 Although, in principle, we could have used the process mining 
tool to detect which step individual log entries belong to, in our 
case, we detected step entry and exit by other means. In our future 
work, we plan to integrate the process mining and the triggering 
more closely. 
 



sdmcmmapp--firstASG for app sdmcmmapp] Deregistered instances [i-
e07969dd] from load balancer FirstELB ","@type":"asgard"} 

{"@source":"file://postcondition.com/postcondition.log","@tags":["push","s
dmcmmapp--firstASG","step2"],"@timestamp":"2013-07-28 T09:15:51. 
284Z","@source_host":"postcondition.com","@source_path":"//postcon
dition.log","@message":"[2013-07-28 19:15:50, 482] [postcondition] 
[Task:Pushing ami-17cf5d2d into group sdmcmmapp--firstASG for app 
sdmcmmapp] [Step:pushstep2] Instance i-e07969dd has been successfully 
deregistered from ELB FirstELB","@type":"postcon"} 

6. PRELIMINARY EVALUATION 
Our approach provides evaluator services in parallel with the 
deployment operation to (re-)evaluate the assertion after every 
critical operation step. The result of the evaluation is combined with 
the original operation logs to produce more evaluation information. 
In this section, we evaluate the proposed mechanism and additional 
evaluation information produced from an error detection 
perspective. We manually injected some cloud resource errors at 
different severity levels during rolling upgrades of an ASG with 4 
instances, and use our prototype to detect those injected errors.  

 
Figure 5. Structure of triggers and evaluators. 

6.1 Detection of Temporary Erroneous State 
The assertions we used for the basic checking are shown in table 2. 
Only the first assertion is evaluated once. All the other 6 assertions 
are evaluated for each pair of one old node and one new node. Thus, 
25 assertions were evaluated in total, printing 25 extra log lines. The 
evaluation doesn’t delay the deployment process of Asgard, because 
the assertions are evaluated asynchronously. Every evaluation is 
nearly instantaneous, except for short delays introduced by Logstash 
and Edda. 

The system being deployed could be in a "temporary" erroneous 
state before returning to a correct state. Some of the temporary 
errors are detected and logged by Asgard, and some are not. We 
could detect such errors but it might not be valuable. In our first 
case, we injected two temporary errors: 1) deleting a new instance 
before it is ready, and 2) deleting a new instance after it is ready. 
Our evaluator detected both errors. Asgard, however, only detects 
the first error and launched another instance. For the second error, a 
compensation instance is launched by ASG after the rolling 
upgrade.  

6.2 Early Detection of Error 
Some errors, which take a long time before Asgard throws an 
exception, are detected by our mechanism earlier. Missing ELB 

(Elastic Load Balancer) is one of the faults causing such errors. 
Once an ASG is associated with an ELB, any new instance must be 
registered with the ELB to become “in service,” i.e., receive traffic. 
If the ELB becomes unavailable, ASG cannot successfully launch 
new instances. Asgard’s configuration includes a setting for the 
maximal number of retries in case of failed startup. Asgard will 
print an error log and abort the rolling upgrade operation after 
retrying the maximal of times.  

To simulate the case of a failed ELB, we manually deleted the ELB 
associated with the ASG after one instance is successfully launched 
by Asgard. After around 15 minutes, Asgard printed the final error, 
shown as below, which does not provide useful information about 
the potential cause of the fault.  

[2013-08-19 15:30:09,165] [Task:Pushing ami-17cf5d2d into group 
sdmcmmapp--firstASG for app sdmcmmapp] Exception:com.netflix 
.asgard.push. PushException: 1 of 4 instance relaunches done. Startup failed 
6 times for one slot. Max 5 tries allowed. Aborting push. 

 
Figure 6. Allocation of ELB existence assertions. 

To detect such errors, we added an assertion after every critical step 
to check if the ELB was still alive. As shown in Figure 6, 13 extra 
evaluation log lines are added in total. When the ELB is deleted 
after the first node is successfully launched, the evaluator associated 
with the assertion at the next step of the fault step (remove and 
deregister second instance from ELB) detected the missing ELB and 
printed a log line as below. “sdmcmmappELB” is the ID of the ELB 
associated with the ASG. The timestamp shows that our evaluation 
detected the missing ELB after approx. 2 minutes (roughly 13 
minutes earlier than Asgard with the above configuration). The time 
difference depends on the maximal retries, so Asgard could report 
the error more quickly if configured accordingly.  
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[2013-08-19 15:17:59,205] [postcondition] [Task:Pushing ami-17cf5d2d 
into group sdmcmmapp--firstASG for app sdmcmmapp] [Step:pushstep2] 
ELB sdmcmmappELB does not exist. 

6.3 Detection of Silent Error 
There are some subtle configuration errors that escape Asgard 
completely, and result in an erroneous (not failed) system after the 
rolling upgrade. For example, a race condition during deployment 
can cause the launch configuration associated with the ASG to be 
changed during a rolling upgrade. Asgard doesn’t detect such 
modifications of the ASG configuration. The printed logs are 
exactly the same as successful runs. However, the ASG ends up 
with 4 instances using two different launch configurations, for 
example, different AMIs, Kernel IDs, or security groups. 

As we did for the case of a missing ELB, we added an assertion 
after every critical step to check the launch configuration used by 
the ASG. Thus, we added another 13 extra evaluation log lines into 
the original Asgard log. The following two log lines are produced 
by the evaluator: one line shows the configuration passing the check 
and the other shows it failing.  
[2013-08-19 13:32:22,909] [postcondition] [Task:pushing sdmcmmapp----
firstASG] [Step:pushstep3] sdmcmmapp--firstASG is using launch 
configuration sdmcmmapp --firstASG-20130819133202  

[2013-08-19 13:38:09,425] [postcondition] [Task:pushingsdmcmmapp----
firstASG] [Step:pushstep4] icse--firstASG is using launch configuration 
sdmcmmapp--firstASG-20130819124209 rather than sdmcmmapp--
firstASG-20130819133202 

6.4 Limitations of Using Logs as Triggers 
Using only logs to trigger the evaluator has some limitations.  

• For some operation steps duplicate log lines are produced by 
Asgard. For example, two almost identical logs lines are 
produced before a function is invoked and within the function 
respectively without indicating the context. In this case, the 
regular expression we use to match the log line must be very 
specific to distinguish the two different but very similar log 
lines to avoid triggering an evaluation twice.  

• Some operation steps, especially the ones done by a third-party 
(like Amazon) do not produce any entries in the Asgard log. 
Thus, the operation steps provided by third-party services are 
invisible, unless Asgard has some built-in monitoring and 
logging mechanism to check what the third-party service does. 

7. DISCUSSION AND FUTURE WORK 
We have demonstrated that using an annotated process model to 
guide error detection is a feasible approach to detecting errors that 
occur during provisioning. Our prototype both detected errors faster 
than they would otherwise have been discovered and also detected 
errors that would not have been discovered until execution of the 
system being deployed. 

We did this under favorable assumptions, however. The logs 
produced by Asgard are of high quality and come from a single 
source. We also implemented several steps of our proposed 
workflow manually. Our future work includes removing these 
favorable assumptions. We plan to: 

1. Automate more steps. We hand crafted many of the 
intermediate steps in our error detection. Some of these could 
be, at least partially, automated. One candidate is to more 
tightly integrate the process mining and the post condition 
triggering. 

2. Deal with other and multiple sources of logs. Asgard produces 
very high quality logs. We need to be able to construct a 
process model and trigger assertion evaluation when the logs 
come from different sources and are of lesser quality. 

3. Diagnose errors. Detecting errors early provides more 
possibilities for error diagnosis and we plan to explore some of 
those possibilities. 

4. Generalize our current approach for different contexts. We are 
investigating applying our process mining technique into 
VMware environments, applying our approach into the Chef 
framework, and working on decoupling the creation of the 
process models from logs. 
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