Facilitating Enterprise Service Discovery for
Non-Technical Business Users

Marcus Roy, Basem Suleiman, and Ingo Weber

SAP Research, Sydney NSW 2060, Australia
School of Computer Science and Engineering, UNSW, Sydney NSW 2052, Australia
{m.roy,basem.suleiman}@sap.com, ingo.weber@cse.unsw.edu.au

Abstract. Enterprise Services (ES) are Web services with which en-
terprise applications expose a subset of their functionality. Due to the
often high number of different ES, as well as the complex nature of their
names, it is difficult for non-technical business users to discover services
in ES repositories. However, most of this complexity stems from a SOA
governance-driven service design process that is essential to the develop-
ment of harmonized and long-lasting ES. Based on the example of SAP’s
ES, we describe a representational model that consolidates existing mod-
els and patterns used during the service design process. We created an
iterative search approach that uses this consolidated metadata. The eval-
uation of the approach with real business users, based on a prototypical
implementation, demonstrates that our iterative search is more efficient
and effective than the currently offered search.

1 Introduction

Business process automation enables a cost-effective, agile and rapid compo-
sition and execution of new applications to address on-demand and changing
organizational requirements. It leverages a business user’s expertise to perform
the modeling of business processes by specifying relevant activities that in turn
are implemented by experienced developers reusing existing Enterprise Services
(ES) in a Service-Oriented Architecture (SOA). In IT organizations, ES rep-
resent non-public Web Services intended for internal developers, partners and
customers to reuse enterprise-specific data and functionality from existing legacy
applications stored in company-internal repositories, e.g. SAP Enterprise Service
Repository and Registry (ESR) or IBM WebSphere Service Registry and Repos-
itory (WSRR). They are idiosyncratically designed to represent specific parts
of integrated and enterprise-internal business processes and legacy applications
leading to long, technical and less comprehensive signatures (in this work we refer
to service interface and operation names only) as shown in Examples (1.1- 1.3) of
an ”Sales Order” related SAP ES. These examples also underline the difficulty to
discover ES as described by Beaton et al. [3,2]. Generally, when it comes to the
naming of ES, it is a challenge to give unique and easy-to-understand names to a
large number of ES, e.g. SAP Business Suite offers more than 4000 ES (08/2010).
Most of its complexity has been introduced deliberately during its development
life-cycle to ensure long-lasting, unique and easy-to-manage ES from a software

2 Marcus Roy et al.

engineering perspective. For instance, the ES shown in Example (1.1) is quite
detailed and less prone to duplication. It describes a read operation of a Sales
Order, stored in an ERP system, which is identified by an ID expected as part
of the request. Most of these intrinsic characteristics are inferred from a stan-
dardized service design process applied prior to the service implementation as
part of a SOA governance process that guides and governs the development of
ES. It is indispensable for large enterprises to follow such a globally agreed on
SOA governance process.

SalesOrderERPByIDQueryResponse_In (1.1)
SalesOrderCreateRequestConfirmation_In (1.2
SalesOrderBasicDataByBuyerAndBasicDataQueryResponse_In (1.3)

In the following, we used the example of an SAP service design process to
illustrate the use of agreed-on methodologies and proprietary models that can
be adopted to what we call a service and data model. Principally, such a design
process is not limited to SAP, but can also be found with others companies (not
the focus here). We then introduced a representational model that integrates
both service and data models as first-class components including their relation-
ship. Based on this model, we created a metadata repository based on a list of
ES and their respective metadata that has been extracted from multiple sources,
e.g. corporate web pages and semi-structured documents. This metadata hereby
refers to entities in the data and service model respectively. Note that the focus
of this paper is not on yet another service description technology. We are not
competing with existing technologies, e.g. RDF or OWL-S, instead we could uti-
lize them to represent such metadata as annotations. We then implemented the
conceptual solution of our iterative search in form of a prototype. We performed
a first evaluation of this prototype with real business users, which demonstrates
the feasibility of our approach to enhance the current search for ES.

In the remainder, we explain the service design process in Section 2 and intro-
duce our representational model in Section 3. Section 4 details on our iterative
search and prototype. In Section 5, we evaluate our search and prototype, refer
to related work in Section 6 and conclude the paper in Section 7.

2 Service Design Process

In this section, we describe the application of a design process for the service
development. Based on the example of SAP’s ES, we detail on the existing data
and service model used to develop ES as shown in Examples 1.1-1.3.

In the introduction, we generally referred to a SOA governance-driven ser-
vice design process [6, 1] that is deployed to guide and ensure the development
of harmonized and business-aligned ES. It is also used to create a mutual un-
derstanding about the definition and meaning of ES among stakeholders and
partners. Such a design process is required and executed recurrently prior to
any definition and implementation phase. Using the example of an SAP service

Facilitating Enterprise Service Discovery for Non-Technical Business Users 3

design process, developers are guided in their tasks to first design ES by specify-
ing high-level and business-related concepts that abstractly describe the purpose
and scope of the prospective ES.

Most of these design efforts are supported by a modeling tool to visually
compose an abstract service definition as shown in Figure 1. Such an application
enables developers to arrange and order abstract shapes representing existing
key business entities (red shape) as well as the preferred but predefined way of
accessing them (blue shape). Eventually, this visual representation is transformed
into an abstract service definition, i.e. coarse WSDL template, detailing only on
service interfaces and operations.

) Process Component Service Interface

\ ,j Sales Order Processing ~ \~=----- #» Manage Sales Order ’j
D |

Business Object , Service Operation
Sales Order o= AREEEEEE | Create Sales Order ’

Fig. 1. Visual model of an abstract service definition during service design

Although a modeling tool helps to visually generate an abstract ES definition
based on entities from the data and service model, this information is typically
not available to a search environment (though it’s hidden in documentation).
Therefore, Figure 2 illustrates earlier mentioned models, i.e. data and service
model, and their relationship, which embraces key entities of information that
can me made available to a search. For simplicity’s sake, we only focused on
showing a relevant subset of model entities that are considered significant for
the definition of service interface and operation names.

Data Model Service Model

Process Service
Name < | ~Aampanent | [/ Interface
e.g..Sales Order Component /’ Interface Pattern
Processing 1 L 1 e.g..Manage

N . . N

Business |~ . Service
Name] H H Operation
e.g..Sales Order ObJeCt Operat|0n Pattern

e.g..Create
Fig. 2. Subset of the data and service model shown as ER diagram

In Figure 2, a Process Component ”Sales Order Processing” represents a
technical concept similar to a department inside a company that groups all
Sales Order related activities (e.g. Create, Approve, Notify etc.). Within such a
Process Component, a Sales Order Business Object denotes a central business
entity that stores and maintains all relevant information about a real Sales Order

4 Marcus Roy et al.

(e.g. Buyer, Seller etc.). Figure 2 also shows service model entities, i.e. Service
Interface and Operation, that are associated to related data model entities, i.e.
Process Component and/or Business Object. Based on both model entities and
their association, potential signatures for service interface (Table 1) and opera-
tion (Table 2) are defined. In Table 1, the service interface implicitly describes
a grouping of related service operations that manage a Sales Order of a Sales
Order Processing activity.

Service Interface

Process Component|Sales Order Processing

Business Object Sales Order

Interface Pattern |Manage

Service Interface SalesOrderProcessingManageSalesOrder

Table 1. Construction of the service interface name

Service Operation
Business Object [Sales Order
Interface Pattern |Create

Service Operation|SalesOrderCreateRequestConfirmation_In

Table 2. Construction of the service operation name

The use of the keyword "manage” in the service interface signature is based
on an interface pattern (as shown in Fig. 2) that determines selective service
operations. Hence, service operations listed under a ”manage” interface have to
be either a ”create”, "read”, ”update”, ”change”, ”check” or ”cancel” operation
(called operation pattern). In Table 2, a service operation is defined based on
a ”Sales Order” Business Object and the ”create” operation pattern, which is

implied by the "manage” interface pattern of Table 1.

3 Leveraging Service Design Principles

The example of the previous section illustrated the design of an abstract defi-
nition for service interface and operation names based on the service and data
model model. In this section, we describe how to utilize the knowledge of this ser-
vice design process. Firstly, we designed a representational model (Section 3.1)
by consolidating the data and service model. Second, we created a metadata
repository defined by our representational model and populated it with informa-
tion extracted from multiple sources (Section 3.2). Both representational model
and metadata repository represent the basis of the iterative search as explained
in Section 4.

3.1 A Representational Model

All information stored in our metadata repository is defined according to a rep-
resentational model consisting of the data model extended with entities of the

Facilitating Enterprise Service Discovery for Non-Technical Business Users 5

service model. Originally, both models are used in rather different context mean-
ing that the knowledge about the relationship between both models is not given
by default, and thus, not obvious to anyone trying to discover ES. We therefore
consolidated both models by integrating them and describe their relationship
as the association of Business Object to Service Interface (Fig. 3). Having both
models and their relationship defined as first-class components in our represen-
tational model has the advantage of naturally exploiting services based on their
underlying data model and vice versa. This means we can describe a service
based on its concrete relation to specific data model entities or in turn find any
services that are related to a particular data model entity.

Data Model
Svstem N \ Process 1 N \ Business
Y Component Object
1

N
Service N 1 \ Service

Operation Interface

Service Model

Fig. 3. Enterprise Service Representation Model

3.2 Extraction of Service Design Entities

In order to create the basis for our ES Search approach, which we present in the
next section, we created a metadata repository that represents a list of all avail-
able SAP ES that can be found on SAP’s Enterprise Service Workplace! (ESW).
The ESW is a central place used by developers and consultants to search for and
view detailed information about ES. It includes documentation, examples, and
technical descriptions, e.g. WSDL.

Starting from this list of ES, we enriched the entries with additional metadata
according to our representation model, by extracting information from multiple
sources as follows. Firstly, we extracted data model-related information from a
set of reports (e.g. Excel spreadsheets) that were exported from an operational
content management system. Secondly, we extracted service model data directly
from the ESW: we used simple page scraping techniques to extract data from
the web site of each Enterprise Service.

We then used basic inference techniques and regular expressions on the ex-
tracted data, so as to detect model entities in the service interface and operation
signature. Subsequently we mapped the respective service and service model en-
tities to the data model based on relationship as defined in our representation

! http://www.sdn.sap.com/irj/bpx/esworkplace

6 Marcus Roy et al.

model and created the association in our metadata repository. We also recog-
nized interface and operation patterns and annotated the corresponding service
model entities.

4 Enterprise Service Search

In this section, we describe the concept of the iterative search and its prototypical
implementation. The search uses the repository from the previous section.

4.1 Iterative Search Approach

In order to significantly improve the search, we first analyzed how users search
and what they enter to find a particular ES. This analysis has been conducted
on anonymized log files of search queries entered by users over a period of six
months. In detail, the examined log files contained search strings that have been
categorized according to entities in our model, if applicable. Finally, we accumu-
lated recurrent categories to rank their frequency of occurrence (not in scope of
this work). One key finding was that users rarely enter more than three keywords.
Secondly, they frequently entered simple keywords representing central business
entities that formed the basis of the desired ES, e.g. ”Sales Order” for a ”Create
Sales Order” ES etc. Based on these observations, we created an iterative search
that allows users to choose from a set of predefined search options rather than
allowing them to freely enter search text. Each search option conceptually re-
lates to entities in our model whereas each selection of a search option identifies
a node in the metadata repository. Starting from this node, a list of respective
ES can be inferred by following up on any consecutive parent-child-relationship
down to the Service Operation level as illustrated in Figure 4.

Using such a search-by-selection technique better leverages the underlying
data model from a twofold perspective. Firstly, potential search options (as il-
lustrated in Figure 4) can be directly connected to related entities in our repre-
sentation model without the need to understand and map a potentially volatile
human search text. Secondly, we can use our metadata repository to populate
search options from which the user can choose. With each selection, the content
of any consecutive search option is determined while the list of potential ES
candidates gets iteratively filtered. In the end, the more information is provided
by the user, the more effective is the filtering and the smaller is the result set of
potential ES (enabling a subsequent browsing as a final search step). Our evalu-
ation in Section 5 demonstrates the effectiveness and efficiency if this approach.

4.2 Search Prototype and Example

We have implemented the iterative search as a Web application (cf. Figure 4)
that uses our representational model and metadata repository. In the top half of
the application (Part A), the user can choose from previously mentioned search
options. For each selection, a list of potential ES will be updated and displayed
in the bottom part of the application (Part B). Users can skip search options if
they are unsure about their significance or if the search is already successful.

Facilitating Enterprise Service Discovery for Non-Technical Business Users 7

As an example, say a business user wants to find an Enterprise Service that
”creates a Sales Order”. First and without any selection, a complete list of service
operations is shown (> 4000 ES). In a next step, the user selects ”Sales Order
Processing” from a list of available Process Components (Option 1/Figure 4),
which decrements the result by an order of magnitude as only ES are displayed
that belong to that particular department. In a second step, the user selects
a ”Sales Order” from a list of Business Objects determined by the previously
chosen Process Component (Option 2/Figure 4), which reduces the result set by
another order of magnitude. By that time, users are already able to browse the
significant smaller list of ES to find possible matches. In the case of uncertainty,
the user can continue to choose from the remaining set of options by detailing
on the intention what to do with the Sales Order. The intention to create a Sales
Order implies a ”manage” pattern (Option 3/Figure 4), which reduces the search
result to 11 ES as partly shown in Part B of Figure 4. This search result cor-
rectly contains the desired SalesOrderCreateRequestConfirmation In ES, which
has been given the synonym ” Create Sales Order” for reasons of readability.

Metadata Repository Iterative Search

Enterprise Service Search

Basic Search || Advanced Search

a ?, 'SAP System
. g8
| Sales Order Processing | [Sik e =
a S Sso Business Package
| [sales order processing v
a
. - Business Enti
|aterial \ | Sales Order | \ Custon g5 —
30 Sales Order ~
=}
L l L] Intention
8 Oaction
i \ 2 @ Manage
8 | eI
\ction \ | Manage | \ Quer S8l - S
28 Query
l 3 a—
{ v] &
9§
Read | | Create | | Cance £ % Starch asutss acoeds
8 g Service List
Sale SalesOrderCreate Sale o 1 Cancel Sales Order
Sale SalesOrderItemCreate. Sale 2 Change Sales Order Product Availabilty Reg.
SalesOrderERPCreate. 3 Check Sales Order Creation
4 Check Saes orgerUpcae
5 Creats Sales Order

Fig. 4. Correlation of our representational model to iterative search prototype

5 Evaluation

We evaluated our discovery approach by exposing the above-described iterative
search prototype to a group of test users, as discussed in this section. Since the
time for searching and displaying relevant ES only takes 1-2 seconds, performance
seems to be no big concern in our approach and has not been evaluated further.

5.1 Experimental Setup

Five business users from SAP business consulting and support departments have
been briefly introduced to the ESW search and our iterative search prototype.

8 Marcus Roy et al.

The participants had never used either one of them. They also have been given a
four-step ” Create Sales Order” business process (see Fig. 5) with brief description
of the process activities. They then have been asked to find the relevant ES for
each activity of the given business process by using (1) our iterative search
prototype and (2) the ESW — in that order, so the iterative search would not
benefit from a possible learning curve. Each participant was given 30 minutes to
complete the task.

Find Select Specific Create Show Created .
Customer Customer Quote Sales Order Sales Order

Fig. 5. ”Create Sales Order” Business Process used in the experiment

5.2 Data Collection and Analysis

The participants notified us whenever they thought they found a service for
one of the activities. During each experiment (1) and (2) for each of the five
participants, we recorded the time spent to find each ES. We also observed
the participants’ behavior in terms of how easy or hard it was for them to use
the respective application to find the relevant services. After each experiment,
we asked the participants about their experience with each of the investigated
tools. We recorded all their feedback for future improvements. The summary of
the results collected from our experiments are grouped into two main categories:
First, the search time represents the overall time (in seconds) spent by each
participant to find all relevant ES and second, the total number of correct ES
found by each participant (out of 4 services).

1000

4
900 A P
800 o
700 »
T 600
£ p P2
S s00 "\)(dl\
E 0 - ——lterative Search
300 \\ —8—ES Workplace
200 \

100 =& Iterative Search

~i—ES workplace
P1 P2 [&] P4 PS

Particpants

Fig. 6. Evaluation results, per participant, using the ESW vs. our iterative search.
Left: search time; Right: number of correctly discovered services.

The result, as depicted in Fig. 6 (left) , shows that the search time spent
by almost all participants, except for participant P1, using our iterative search
prototype is noticeably less than the time required by the same participants
using the ESW. For instance, participants P4 and P5 spent only about a third
of the ESW search time using our iterative search to find the four ES. With
respect to participant P1, we noticed some degree of uncertainty when using
our prototype, compared to the other participants. We also noticed that he

Facilitating Enterprise Service Discovery for Non-Technical Business Users 9

found some ES on the ESW by coincidence. In summary, the average search
time spent by all participants using our iterative search is more than half of
the time spent by the same participants using the ESW. Although the number
of asked participants is not significant large, the results still clearly indicate an
improvement of our iterative search approach over the existing ESW in terms of
search time.

The second evaluation criterion is the number of correct ES found by par-
ticipants using both search applications. As shown in Fig. 6 (right), 60% of
participants were able to find all four correct ES by using our iterative search
prototype compared to 40% of participants using the ESW search. The mini-
mum number of ES found is two on ESW vs. three with our iterative search.
Although 40% of the users have not found all four correct services (sometimes
as simple as a ”Create Sales Order”), they at least found three out of four ES
and therefore did not completely fail. On the basis of these initial results, we
can say that our approach has the potential to iteratively improve the search,
with room for further improvements. Although the number of five users can be
considered marginal to comprehensively validate our search, we believe it yet
has shown the potential to improve the discovery of Enterprise Services over the
existing search.

6 Related Work

In order to position our work, we classified current service retrieval techniques
into linguistic, semantic and hybrid approaches.

Linguistic-based approaches are mainly based on textual analysis of service
description such as a WSDL using clustering such as [5,8,17] techniques. For
instance, the Woogle [5] search engine uses a similarity search for operations by
grouping operation parameters into meaningful concepts.

Semantic approaches are based on extending service descriptions with formal
models to capture their underlying meaning. The resulting so-called Semantic
Web Services (SWS) [11] relate service properties to concepts belonging to on-
tologies — roughly speaking, formal conceptual models of the terms in a given
domain, including relationships and constraints between terms. The discovery
approach is usually to match concepts of queries against SWS descriptions, us-
ing logic-based inference. In [4], the service discovery algorithm matches service
request against the services ontology using description logic. Similarly, [10,12]
present service matchmaking approaches to enable discovery of ontology-based
service descriptions based on DAML-S. The matching technique in [9] relates
service inputs and outputs using OWL ontologies to capture the meaning of
terms in service descriptions. Also, [14] describes the formalization of a client
query as a goal that is matched to the goal of a service. However, semantic
discovery requires (i) an agreed-upon common ontology, (ii) complete semantic
service descriptions, which can require considerable manual effort during service
development, and (iii) semantic models for queries.

Hybrid approaches, e.g. [13,15,18,7,16] use the ontology and semantic tech-
niques to enhance linguistic service discovery. For example, the Seekda [13] public

10 Marcus Roy et al.

search engine relies on crawling and data mining techniques of Web API reposi-
tories such as ProgrammableWeb (http://www.programmableweb.com/) in order to
automate the annotation of APIs with metadata that can be used for a semantic
search. The Opossum [16] search engine also crawls the Web for WSDL descrip-
tions and transforms them into a generic ontological-based model. The service
properties are then automatically enriched with concepts from existing ontolo-
gies of different domains (e.g. finance, e-commerce). Search is done by matching
concepts of the query against the ontological-based model of the service. This is
done by considering the linguistic and structural properties of ontology.

Our approach is different from the above since we base it on concepts that
stem from an organizational SOA governance-driven service design process which
guides the development of the ES. In a way, the collection of terms that are
instances of the data and service model elements can be seen as a specialized
ontology. The corresponding vocabulary contains rather business terms than
technical concepts. As such, discovery in this context cannot be put on a par
with discovery of arbitrary Web services on the Web. Instead, ES are very much
predictable as they comply to internal design principles, which are created once
and applied to all existing and future ES.

7 Conclusion and Future Work

In this paper, we investigated how SOA governance artifacts can be used during
service discovery. We first explained why governance is necessary when large
amounts of services are developed, and showcased the artifacts that can result
from governance at the example of the more than 4000 Enterprise Services from
SAP. At the core of the information of interest in this context are the service
and data models, which are used to abstractly define ES interface and operation
names. For our discovery approach, we created a representational model offer-
ing a consolidated view on both models. Based on this combined model and its
associations, we created a metadata repository of all SAP ES, and enriched it
with the metadata extracted from multiple (real-world) sources. We then devel-
oped an iterative search based on this metadata repository. An initial evaluation
of our prototype with a group of test users demonstrated the feasibility and
effectiveness of our approach.

In the future, we plan to more generally investigate the complex nature of
governance-driven service design. We believe this will lead to richer ES descrip-
tions, and ultimately a more sophisticated and effective search technique. Finally,
we will continue evaluate our techniques with real users as the work progresses.

References

1. D. J. Artus. SOA Realization: Service Design Principles. http://www.ibm.com/
developerworks/webservices/library/ws-soa-design/, February 2006.

2. J. Beaton, S. Y. Jeong, Y. Xie, J. Stylos, and B. A. Myers. Usability Challenges
for Enterprise Service-oriented Architecture apis. In VLHCC. IEEE, 2008.

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Facilitating Enterprise Service Discovery for Non-Technical Business Users 11

J. K. Beaton, B. A. Myers, J. Stylos, S. Y. S. Jeong, and Y. C. Xie. Usability
evaluation for enterprise SOA APIs. In SDSOA ’08. ACM, 2008.

B. Benatallah, M. Hacid, A. Leger, C. Rey, and F. Toumani. On Automating Web
Services Discovery. VLDB Journal, 14(1):84-96, 2005.

X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similarity Search for
Web Services. In VLDB ’0/: Proceedings of the Thirtieth international conference
on Very large data bases, pages 372-383. VLDB Endowment, 2004.

T. Erl. Service-Oriented Architecture : Concepts, Technology, and Design. Prentice
Hall Professional Technical Reference, 2005.

G. Fenza, V. Loia, and S. Senatore. A Hybrid Approach to Semantic Web Services
matchmaking. Int. J. Approz. Reasoning, 48(3):808-828, 2008.

. A. Funk and K. Bontcheva. Ontology-based Categorization of Web Services with

Machine Learning. In LREC’10, Valletta, Malta, may 2010. ELRA.

D. Hull, E. Zolin, A. Bovykin, I. Horrocks, U. Sattler, and R. Stevens. Deciding
Semantic Matching of Stateless Services. In AAAI 2006.

L. Li and I. Horrocks. A Software Framework for Matchmaking based on Semantic
Web Technology. In WWW’03, 2003.

S. A. Mcllraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEFE Intelligent
Systems, 16(2):46-53, 2001.

M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic Matching of Web
Service Capabilities. In ISWC’02, 2002.

N. Steinmetz, H. Lausen, and M. Brunner. Web Service Search on Large Scale. In
1CSOC/ServiceWave, pages 437444, 2009.

M. Stollberg, U. Keller, H. Lausen, and S. Heymans. Two-Phase Web Service
Discovery based on Rich Functional Descriptions. In ESWC, pages 99-113, 2007.
E. Toch, A. Gal, I. Reinhartz-Berger, and D. Dori. A Semantic Approach to
Approximate Service Retrieval. ACM Trans. Inter. Tech., 8(1):2, 2007.

E. Toch, I. Reinhartz-berger, A. Gal, and D. Dori. OPOSSUM: Bridging the Gap
Between Web Services and the Semantic Web. In NGITS, Vol. 4032 of LNCS,
pages 357-358. Springer, 2006.

J. Wu and Z. Wu. Similarity-based Web Service Matchmaking. In SCC 05, pages
287294, Washington, DC, USA, 2005. IEEE Computer Society.

Y. Zhang, B.-Y. Liu, and H. Wang. A Method of Web Service Discovery Based
on Semantic Message Bipartite Matching for Remote Medical System. J. Theor.
Appl. Electron. Commer. Res., 4(2):79-87, 2009.

